

1988 DISK/TREND® REPORT

OPTICAL DISK DRIVES

1988 DISK/TREND® REPORT

OPTICAL DISK DRIVES

July, 1988

DISK/TREND, Inc. 1925 Landings Drive Mountain View, California 94043

Telephone: 415/961-6209 Facsimile: 415/969-2560

Telex: 171914

© Copyright 1988 by DISK/TREND, Inc. All rights reserved. No portion of this report may be reproduced in whole or in part without written permission. All information included is believed to be reliable but cannot be guaranteed to be complete or correct. DISK/TREND is a trademark registered in the United States Patent and Trademark Office.

FOREWORD

After another slow year, optical disk drive shipments finally seem to be showing significant growth in some product segments. The arrival of erasable optical drives has rekindled OEM interest, and announcements of real products by respected suppliers gives the industry needed credibility. The CD-ROM segment has moved past the introductory phase and is now well enough established to allow attention to be directed to manufacturing and marketing issues.

Some observations from last year still bear repeating. Manufacturers must finally settle upon standards for drives and media. Some supporting software is available, but more is required. Erasable media must be incorporated in product designs and standards. And competitors must make the investment in high efficiency production facilities if they are to withstand competition and promote market growth. It's still not an industry for the fainthearted or underfinanced.

This year DISK/TREND is initiating a new product, DISK/TREND on disk. Subscribers to the DISK/TREND Report can obtain the statistical and specification tables on floppy disks. Instructions for using the disks are included at the end of this report.

We are always willing to help you at any time by providing additional information on the industry which we may have available. And, as always, we welcome and appreciate your suggestions for improvements in the DISK/TREND report.

James N. Porter
Robert H. Katzive

TABLE OF CONTENTS

	<u>Page</u>
INTRODUCTION	SUM-1
SUMMARY	SUM-2
Industry size Marketing channels Product mix OEM market	SUM-2 SUM-4 SUM-6 SUM-12
TECHNICAL REVIEW	SUM-16
Optical disk drive enhancements	SUM-17 SUM-25 SUM-31
DEFINITIONS	SUM-39
READ-ONLY OPTICAL DISK DRIVES	DT11-1
READ/WRITE OPTICAL DISK DRIVES, LESS THAN 1 GIGABYTE	DT12-1
READ/WRITE OPTICAL DISK DRIVES, MORE THAN 1 GIGABYTE	DT12-1
OPTICAL DISK DRIVE SPECIFICATIONS	OSPEC-1
MANUFACTURER PROFILES	MFGR-1
DISK/TREND ON DISK	DTDISK-

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1	CONSOLIDATED WORLDWIDE REVENUES, All Optical Disk Drive Groups	SUM-3
2	CONSOLIDATED WORLDWIDE REVENUES, Optical Disk Drives, Market Class Review	SUM-5
3	CONSOLIDATED WORLDWIDE REVENUES, Optical Disk Drives, Product Category Review	SUM-9
4	CONSOLIDATED WORLDWIDE SHIPMENTS, Optical Disk Drives Product Category Review	SUM-11
5	OEM WORLDWIDE REVENUES, Optical Disk Drives, Product Category Review	SUM-13
6	OEM WORLDWIDE SHIPMENTS, Optical Disk Drives, Product Category Review	SUM-14
7	CURRENT PRODUCT LINES, Manufacturers of Optical Disk Drives	SUM-15
8	READ-ONLY OPTICAL DISK DRIVES, Revenue Summary	DT10-12
9	READ-ONLY OPTICAL DISK DRIVES, Unit Shipment Summary	DT10-13
10	READ-ONLY OPTICAL DISK DRIVES, Revenue Breakdown by Disk Diameter	DT10-14
11	READ-ONLY OPTICAL DISK DRIVES, Shipment Breakdown by Disk Diameter	DT10-15
12	READ-ONLY OPTICAL DISK DRIVES, Applications Summary	DT10-16

LIST OF TABLES (Continued)

<u>Table</u>		<u>Page</u>
13	READ/WRITE OPTICAL DISK DRIVES, LESS THAN 1 GIGABYTE, Revenue Summary	DT11-18
14	READ/WRITE OPTICAL DISK DRIVES, LESS THAN 1 GIGABYTE, Unit Shipment Summary	DT11-19
15	READ/WRITE OPTICAL DISK DRIVES, LESS THAN 1 GIGABYTE, Revenue Breakdown by Disk Diameter	DT11-20
16	READ/WRITE OPTICAL DISK DRIVES, LESS THAN 1 GIGABYTE, Shipment Breakdown by Disk Diameter	DT11-21
17	READ/WRITE OPTICAL DISK DRIVES, LESS THAN 1 GIGABYTE, Erasable/Write-Once Drive Analysis	DT11-22
18	READ/WRITE OPTICAL DISK DRIVES, LESS THAN 1 GIGABYTE, Applications Summary	DT11-23
19	READ/WRITE OPTICAL DISK DRIVES, MORE THAN 1 GIGABYTE, Revenue Summary	DT12-14
20	READ/WRITE OPTICAL DISK DRIVES, MORE THAN 1 GIGABYTE, Unit Shipment Summary	DT12-15
21	READ/WRITE OPTICAL DISK DRIVES, MORE THAN 1 GIGABYTE, Revenue Breakdown by Disk Diameter	DT12-16
22	READ/WRITE OPTICAL DISK DRIVES, MORE THAN 1 GIGABYTE, Shipment Breakdown by Disk Diameter	DT12-17
23	READ/WRITE OPTICAL DISK DRIVES, MORE THAN 1 GIGABYTE, Applications Summary	DT12-18

LIST OF FIGURES

Figure			<u>Page</u>			
1	CHANGING PRODUCT MIX Consolidated Worldwide	Optical	Disk	Drive	Revenues.	SUM-8
2	CHANGING PRODUCT MIX Consolidated Worldwide	Optical	Disk	Drive	Shipments	SUM-10

INTRODUCTION

The DISK/TREND report on optical disk drives is now in its third year of publication, and continues with the format previously established. For those readers unfamiliar with DISK/TREND reports, a few useful points will help in interpreting the information presented.

- * As with other DISK/TREND reports, this report concentrates upon disk drives used with computers, rather than upon media, controllers, or other related topics. Optical disk drives for entertainment, optical tape drives, and optical card drives are not covered.
- * All unit totals are given in spindles. At present, all optical disk drives have one spindle, but may have more in future products.
- * The values of any leased disk drives are given on an 'if-sold' basis in all DISK/TREND estimates.
- * Market share tables are usually included in DISK/TREND reports, but have again been omitted for this year's report on optical disk drives because the 1987 market was still too small for market share figures to be meaningful.
- * This year's report divides optical disk drives into three groups:
 - * Read-only optical disk drives
 - * Read/write optical disk drives less than 1 gigabyte
 - * Read/write optical disk drives more than 1 gigabyte

The two read/write groups include all drives with the capability to both read and write data on an optical disk, regardless of whether individual drives are intended to operate primarily in a write-once mode, an erasable (rewritable) mode, or to have multifunction capabilities. However, where erasable drives are becoming a significant forecast segment, they are specifically forecast.

- * All Disk/Trend product groups have been renumbered as a result of the creation of a new rigid disk drive product group. However, for optical disk drives, only the group numbers are modified.
- * For the first time, the data contained in the tables of DISK/TREND reports is being offered on floppy disks as an option to report subscribers. The instructions for use of the disks have been included as a new section of the report entitled DISK/TREND on Disk.

SUMMARY: OPTICAL DISK DRIVES

Industry size

The optical disk drive industry displayed uneven performance in 1987. CD-ROM shipments reached significant levels, but shipments of write-once drives, while growing, were unimpressive. OEM shipments grew well, but shipments for captive applications declined.

Altogether, 99,400 drives were shipped in 1987, generating revenues of \$170.9 million. Only 8.7% of unit shipments were made by U.S. manufacturers, but U.S. firms captured 16.6% of industry revenues due to differences in product mix between U.S. and non-U.S. suppliers. In 1991, worldwide unit shipments are expected to increase to about 1,406,000 units, while revenues rise to almost \$1.5 billion. U.S. manufacturer's share of unit shipments will rise to 41% of units and 40.9% of revenues.

About 40% of the 1991 unit shipments, but only about 14.6% of revenues, will be from CD-ROM read-only drives. About 11.5% of the 1991 revenues, but only 1.8% of 1991 shipments, will be derived from high end read/write drives, because of higher average unit prices.

IBM's initial sales of optical disk drives are estimated at only \$4.3 million for 1987, but, as new products are introduced, are expected to grow to \$240 million in 1991. IBM will hold about 39% of the U.S. total, but only 16% of the worldwide total revenue for optical disk drives in 1991.

Non-U.S. manufacturers of optical drive systems have an advantageous position because of previous years of design and manufacturing experience with optical drives. However, U.S. firms will gradually catch up. Captive systems made by non-U.S. manufacturers are forecasted at about 54% of captive drive revenue in 1991, down from 88% in 1987.

TABLE 1
CONSOLIDATED WORLDWIDE REVENUES
OPTICAL DISK DRIVES
REVENUE SUMMARY

	10	 187	DISK D		VENUES, BY SHIPMENT DESTINATION (\$M)Forecast						
	Reve	nues	19	88	19		19			991	
,	U.S.	WW	U.S.	WW	U.S.	WW	U.S.	WW	U.S.	WW	
U.S. Manufacturers											
IBM Captive	3.5	4.3	2.2	2.5	11.7	15.2	54.0	72.0	180.0	240.0	
Other U.S. Captive	3.0	3.0	3.0	3.0	3.5	3.5	3.0	6.0	6.0	9.0	
TOTAL U.S. CAPTIVE	6.5	7.3	5.2	5.5	15.2	18.7	57.0	78.0	186.0	249.0	
OEM	13.4	21.2	29.1	38.6	72.8	97.1	160.0	205.1	282.8	363.1	
TOTAL U.S. NON-CAPTIVE	13.4	21.2	29.1	38.6	72.8	97.1	160.0	205.1	282.8	363.1	
TOTAL U.S. REVENUES	19.9	28.5	34.3	44.1	88.0	115.8	217.0	283.1	468.8	612.1	
Non-U.S. Manufacturers											
Captive	15.8	54.3	25.0	92.1	28.4	117.0	36.3	176.0	67.6	287.1	
OEM	60.4	88.1	103.4	157.6	178.4	254.5	287.0	382.5	436.4	591.9	
TOTAL NON-U.S. REVENUES	76.2	142.4	128.4	249.7	206.8	371.5	323.3	558.5	504.0	879.0	
Worldwide Recap											
TOTAL WORLDWIDE REVENUES	96.1	170.9	162.7	293.8	294.8	487.3	540.3	841.6	972.8	1,491.1	

Marketing channels

The marketing channels used by optical drive manufacturers as of mid1988 include captive and OEM channels, but no activity by plug compatible
manufacturers (PCMs). The OEM channel includes dealers, distributors,
system integrators, system OEMs and any other channel not explicitly captive or PCM. OEM shipments of \$109.3 million accounted for 64% of 1987
revenues, an increase of over 61% from 1986. The OEM share is expected to
remain near this level throughout the forecast period. Captive shipments
in 1987 were \$61.6 million, a decline of 54.4%, reflecting a slowdown of
sales of captive drives in the Japanese domestic market, due at least in
part to the inability of the document filing systems offered to communicate well with other equipment. Captive shipments will rise as new generations of equipment incorporating improved inter-system connectivity are
introduced in this and coming years and should reach \$536 million in 1991.

No plug compatible sales are anticipated within the forecast period. The model 3363 drive introduced by IBM hasn't achieved a level of sales that would interest potential PCM suppliers. If IBM introduces an on-line optical disk drive based mass storage subsystem in 1990 or 1991 as anticipated, some PCM sales could result in following years.

Revenues are given in this report based on the price of each drive the first time it is sold to a non-affiliated buyer, at captive end user, PCM or OEM levels. Prices are based on disk drives alone, without controllers or other accessories, and leased drives are valued at the price they would command if actually sold. The OEM price of the drive is typically 1/4 to 1/5 of its captive price.

TABLE 2
CONSOLIDATED WORLDWIDE REVENUES

OPTICAL DISK DRIVES MARKET CLASS REVIEW REVENUE SUMMARY

WORLDWIDE REVENUES	1987 Revenues								100	
BY MANUFACTURER TYPE	kever	ues	\$M		198 \$M		199 \$M	%		%
U.S. Manufacturers										
IBM Captive	4.3	2.5%	2.5 -41.9%	.8%	15.2 +508.0%	3.1%	72.0 +373.7%	8.5%	240.0 +233.3%	16.0%
Other U.S. Captive	3.0	1.7%	3.0	1.0%	3.5 +16.7%	.7%	6.0 +71.4%	.7%	9.0 +50.0%	.6%
OEM .	21.2 +35.9%	12.4%	38.6 +82.1%	13.1%	97.1 +151.6%	19.9%	205.1 +111.2%	24.3%	363.1 +77.0%	24.3%
Total U.S. Manufacturers	28.5 +82.7%	16.6%	44.1 +54.7%	14.9%	115.8 +162.6%	23.7%	283.1 +144.5%	33.5%	612.1 +116.2%	40.9%
Non-U.S. Manufacturers										
Captive	54.3 -59.8%	31.7%	92.1 +69.6%	31.3%	117.0 +27.0%	24.0%	176.0 +50.4%	20.9%	287.1 +63.1%	19.2%
OEM	88.1 +68.8%	51.7%	157.6 +78.9%	53.8%	254.5 +61.5%	52.3%	382.5 +50.3%	45.6%	591.9 +54.7%	39.9%
Total Non-U.S. Manufacturers	142.4 -24.0%	83.4%	249.7 +75.4%	85.1%	371.5 +48.8%	76.3%	558.5 +50.3%	66.5%	879.0 +57.4%	59.1%
Worldwide Recap										
Captive	61.6 -54.4%	36.0%	97.6 +58.4%	33.2%	135.7 +39.0%	27.8%	254.0 +87.2%	30.2%	536.1 +111.1%	36.0%
OEM	109.3 +61.2%	64.0%	196.2 +79.5%	66.8%	351.6 +79.2%	72.2%	587.6 +67.1%	69.8%	955.0 +62.5%	64.0%
Total All Manufacturers	170.9 -15.8%	100.0%	293.8 +71.9%	100.0%	487.3 +65.9%	100.0%	841.6 +72.7%	100.0%	1,491.1 +77.2%	100.0%

Note: Percentage figures with plus/minus signs refer to year-to-year growth rates.

Product mix

In 1987, read-only drives accounted for 74.5% of unit shipments. By 1991, however, they will be eclipsed by small read-write drives, due to strong anticipated growth in erasable drive shipments, but will still account for over 40% of unit shipments.

This year, high capacity drives lost their status as the leading contributor to revenues, due to a declining percentage of the total units shipped. High capacity drive worldwide shipments will drop from 7.9% in 1987 to 1.8% in 1991, while revenue share will decline from 49.1% in 1987 to 11.5% in 1991.

The biggest absolute growth in unit shipments will come from read/write drives under one gigabyte, which are expected to increase from only 17,400 units in 1987 to 813,000 units in 1991. Revenue growth for the smaller read/write drives is lower than the growth rate for unit shipments due to declining average prices.

As of mid-1988, there were nine manufacturers with 4.72" read-only drives in the market (no change from last year) and seventeen manufacturers of write-once 5.25" drives (up from eleven last year). A few of these drives are announced but not yet in production. Five manufacturers have announced 5.25" erasable drives. Eleven manufacturers (a gain of two) are offering 12" drives (Nine are write-once, one is read-only, and one is erasable). Two manufacturers have made an announcement of 3.5" erasable drives. Additional manufacturers have made preliminary announcements of 5.25" and 3.5" erasable drives and several others are developing, but have not yet announced, such products. One 14" drive has been announced.

As shown in Table 7, all but one of the 4.72" drive manufacturers and over half of the 12" drive manufacturers are Japanese firms. Most of the

5.25" drives are now of non-U.S. origin. Starting in 1989, 4.72" optical disk drives using write-once media are expected to become available, and erasable drives in that size are expected to appear in 1991.

Most optical disk drives shipped will use smaller disks -- 3.5", 4.72", and 5.25". The initial volume shipments of read/write drives have been write-once configurations, but after 1988, erasable drives are expected to capture a growing share of unit shipments. For 8", 12" and 14" diameters, erasability will arrive at a later date, because design difficulties with larger diameter erasable media are yet to be overcome. The 3.5" optical disk drives are expected to be almost all erasable types, beginning with the first shipments in 1988 of magneto-optical drives.

5.25" and 4.72" drives will be produced in the full size and half high form factors established originally by 5.25" floppy drives. In 1986, full size drives dominated, but in 1988, the trend to half high models is nearly complete for read-only optical drives. Read/write optical drives in half-high configurations probably won't be in volume production before 1989. The read/write drives are more complex than the typical read-only drive and will require substantial re-engineering to fit in the half high profile. 3.5" optical drives will use the 41 millimeter package height normally found in most of today's small diameter Winchester drives.

8" drives are not expected to be a major growth area through 1991, but limitations on the storage capacity of 5.25" drives and a desire for small form factors will ensure their continued use in captive systems.

Most OEMs, however, prefer multiple 5.25" drives instead of 8" drives.

Figure 1
CHANGING PRODUCT MIX
CONSOLIDATED WORLDWIDE REVENUES
OPTICAL DISK DRIVES

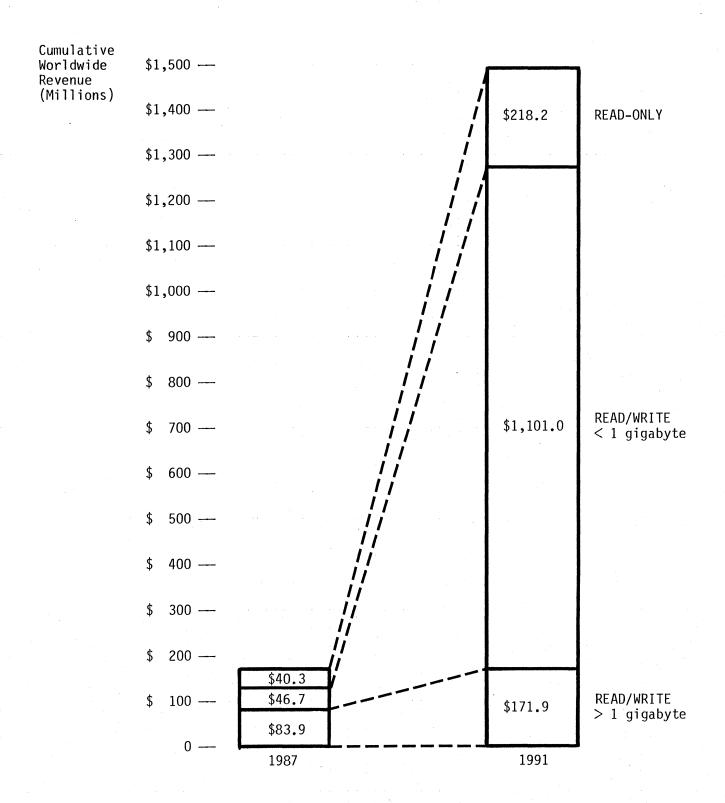


TABLE 3

CONSOLIDATED WORLDWIDE REVENUES

OPTICAL DISK DRIVES

PRODUCT CATEGORY REVIEW

REVENUE SUMMARY

WORLDWIDE REVENUES	1987		Forecast									
ALL MANUFACTURERS	Reve	enues	19	1988		1989		1990		1991		
	\$M	%	\$M	%	\$M	%	\$M	%	\$M	%		
READ-ONLY	40.3	23.6%	49.7	16.9%	81.9	16.8%	140.1	16.6%	218.2	14.6%		
ALL CAPACITIES	+189.9%		+23.3%		+64.8%		+71.1%		+55.7%			
0540 (10775	40.7	07.00	100.0		075 1	F.C. F.A.	557.6	66.00		70.00		
READ/WRITE LESS THAN 1 GIGABYTE	46.7 +120.3%	27.3%	126.8 +171.5%	43.2%	275.1 +117.0%	56.5%	557.6 +102.7%	66.3%	1,101.0 +97.5%	73.8%		
ELSS THIM I GIGNOTTE	120.00						102.70		. 37.30			
READ/WRITE	83.9	49.1%	117.3	39.9%	130.3	26.7%	143.9	17.1%	171.9	11.5%		
MORE THAN 1 GIGABYTE	-50.0%		+39.8%		+11.1%		+10.4%		+19.5%			
Total Worldwide Revenue	170.9	100.0%	293.8	100.0%	487.3	100.0%	841.6	100.0%	1,491.1	100.0%		
	-15.8%		+71.9%		+65.9%		+72.7%		+77.2%			
% U.S. Mfg.	16.6%		15.0%		23.7%		33.6%		41.0%			

Note: Percentage figures with plus/minus signs refer to year-to-year growth rates.

Figure 2
CHANGING PRODUCT MIX
CONSOLIDATED WORLDWIDE SHIPMENTS
OPTICAL DISK DRIVES

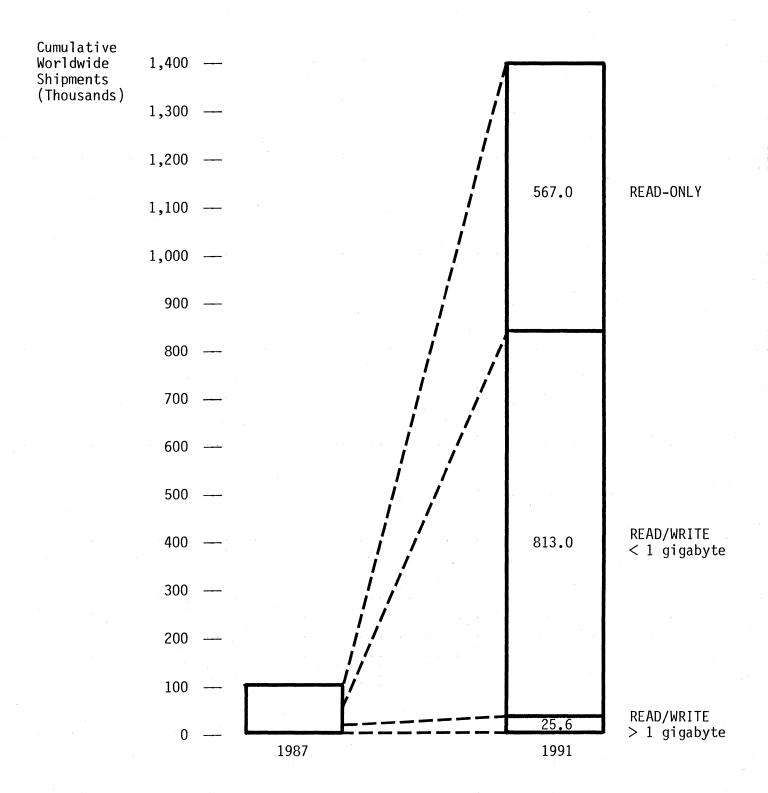


TABLE 4

CONSOLIDATED WORLDWIDE SHIPMENTS
OPTICAL DISK DRIVES
PRODUCT CATEGORY REVIEW

UNIT SHIPMENT SUMMARY

UNIT SHIPMENTS	19	87	Forecast									
IN THOUSANDS	Shipm	ents	19	1988		1989		1990		1991		
	Units	%	Units	%	Units	8	Units	%	Units	%		
READ-ONLY	74.1	74.5%	106.9	65.3%	196.0	55.4%	353.0	49.3%	567.0	40.3%		
ALL CAPACITIES	+290.0%		+44.3%		+83.3%		+80.1%		+60.6%			
READ/WRITE	17.4	17.5%	44.6	27.2%	142.2	40.2%	343.1	47.9%	813.0	57.8%		
LESS THAN 1 GIGABYTE	+304.7%		+156.3%		+218.8%		+141.3%		+137.0%			
READ/WRITE	7.9	7.9%	12.3	7 5%	15.9	Λ Λ&	19.7	2.8%	25.6	1.8%		
MORE THAN 1 GIGABYTE	-6.0%	7.5%	+55.7%	7.5%	+29.3%	4.40	+23.9%	2.0%	+29.9%	1.0%		
Tatal Hamildida Chimmanta	00.4	100.00	162.0	100.00	254.1	100.00	715 0	100.00	1 405 6	100.00		
Total Worldwide Shipments	99.4 +213.6%	100.0%	163.8 +64.8%	100.0%	354.1 +116.2%	100.0%	715.8 +102.1%	100.0%	1,405.6 +96.4%	100.0%		
	+213.0%		TU4.0%		+110.2%		+102.1%		+90.4%			
% U.S. Mfg.	8.7%		8.9%		17.0%		24.2%		28.4%			

Note: Percentage figures with plus/minus signs refer to year-to-year growth rates.

OEM market

OEM market activity continued to follow the same pattern as the general market and, once again, non-U.S. manufacturers captured the bulk of the shipments. Because of large CD-ROM shipments, the U.S. share of OEM worldwide unit shipments in 1987 was only 7.6%. Revenues were 19.3% of the 1987 OEM total. Due to shipments of small erasable drives, in 1991, the U.S. unit share should increase to 26.7%, while the U.S. share of OEM revenues is expected to climb steadily each year to 38%, due to the heavy non U.S. production of lower priced CD-ROM drives.

The read-only optical drive market, which is almost entirely on the CD-ROM, will be retained by non-U.S. manufacturers; these firms have unassailable strengths in volume manufacturing and engineering experience with optical read-only optical drives.

In the read/write drive market, especially for erasable drives, the contest will be more equal. The fast moving and adaptable U.S. firms should be able to compete by meeting market needs more quickly than their foreign counterparts. However, the U.S. firms are limited by the need to source critical components, such as lasers, from non-U.S. companies.

There will be a significant niche market for write-once drives, but no significant competition for magnetic disk drives until fast erasable optical drives go into production. Even then, displacement of magnetic disk drives will be nominal until optical disk drive performance and price catches up with magnetic disk drives. System OEMs have great interest in using erasable optical disk drives to replace tape drives, reducing system complexity and improving performance, but prices equivalent to tape drive prices are required to exploit this opportunity fully.

TABLE 5

OEM WORLDWIDE REVENUES
OPTICAL DISK DRIVES
PRODUCT CATEGORY REVIEW

REVENUE SUMMARY

WORLDWIDE REVENUES	19	987	Forecast								
ALL MANUFACTURERS	Reve	enues	19	1988		1989		1990		1991	
	\$M	%	\$M	% 	\$M	% 	\$M	%	\$M	%	
READ-ONLY ALL CAPACITIES	37.6 +176.5%	34.5%	41.6 +10.6%	21.2%	66.6 +60.1%	18.9%	112.0 +68.2%	19.1%	171.7 +53.3%	18.0%	
READ/WRITE LESS THAN 1 GIGABYTE	25.8 +122.4%	23.6%	77.1 +198.8%	39.4%	193.4 +150.8%	55.1%	369.7 +91.2%	63.0%	651.0	68.2%	
READ/WRITE MORE THAN 1 GIGABYTE	45.9 +7.7%	41.9%	77.5 +68.8%	39.4%	91.6 +18.2%	26.0%	105.9 +15.6%	17.9%	132.3 +24.9%	13.8%	
Total Worldwide Revenues	109.3 +61.2%	100.0%	196.2 +79.5%	100.0%	351.6 +79.2%	100.0%	587.6 +67.1%	100.0%	955.0 +62.5%	100.0%	
% U.S. Mfg.	19.3%		19.6%		27.6%		34.9%		38.0%		

Note: Percentage figures with plus/minus signs refer to year-to-year growth rates.

TABLE 6

OEM WORLDWIDE SHIPMENTS
OPTICAL DISK DRIVES
PRODUCT CATEGORY REVIEW

UNIT SHIPMENT SUMMARY

UNIT SHIPMENTS IN THOUSANDS	1987 Shipments		1988		1989		-Forecast			
111 111003/11103	Units	%		%	Units	%		%	Units	%
READ-ONLY ALL CAPACITIES	72.0 +285.0%	79.2%	99.1 +37.6%	69.1%	180.0 +81.6%	57.1%	320.0 +77.8%	50.9%	505.0 +57.8%	42.3%
READ/WRITE LESS THAN 1 GIGABYTE	13.5 +246.2%	14.9%	35.1 +160.0%	24.4%	123.1 +250.7%	39.0%	294.0 +138.8%	46.6%	670.0 +127.9%	56.0%
READ/WRITE MORE THAN 1 GIGABYTE	5.5 +7.8%	5.9%	9.5 +72.7%	6.5%	12.6 +32.6%	3.9%	16.3 +29.4%	2.5%	21.9 +34.4%	1.7%
Total Worldwide Shipments	91.0 +228.5%	100.0%	143.7 +57.9%	100.0%	315.7 +119.7%	100.0%	630.3 +99.7%	100.0%	1,196.9 +89.9%	100.0%
% U.S. Mfg.	7.6%		9.5%		17.4%		23.6%		26.7%	

Note: Percentage figures with plus/minus signs refer to year-to-year growth rates.

TABLE 7

CURRENT PRODUCT LINES MANUFACTURERS OF OPTICAL DISK DRIVES

Codes: C = Captive

0 = 0EM

E = Erasable				
DISK/TREND PRODUCT GROU	JP:	10	11	12
U.S. Manufacturers (10) Cherokee Data Systems	Type 0	Read-Only Optical Drives	Read/Write Optical Drives <1 GB 5.25	Read/Write Optical Drives >1 GB
Eastman Kodak	<u>č,0</u>		0,120	14
IBM	C		5.25	
Information Storage, Inc.	0		5.25	
Maximum Storage	0		5.25	
Maxtor	0		3.5 E, 5.25 E	
Optimem	0			12
Reference Technology, Inc.	0	12		*******************************
Shugart Corporation	0		5.25	
Verbatim	0		3.5 E	
Japanese Manufacturers (20)		,		
Fujitsu, Ltd.	C,0		5.25	12
Hitachi, Ltd.	C,0	4.72	5.25	12
JVC	0	4.72		
Kawatetsu Advantech	0		5.25	Territoria de la constantida del constantida de la constantida de la constantida del constantida de la constantida de la constantida del constantida d
Matsushita Commun. Ind.	0		5.25, 5.25 E	
Matsushita Electric Ind.	0		5.25	
Matsushita Electronic Comp.	. C,O	4.72		
Matsushita Graphics Commun.			8	
Mitsubishi Electric	0		5.25	
NEC	С	4.72		12
Nikon	0			12 E
Nippon Columbia	0	4.72		
01ympus	0		5.25 E	
Pioneer Electronic Corp.	0		8, 5.25	
Ricoh Co., Ltd.	C,0		5.25	
Sanyo	C,0	4.72	5.25	12
Sharp	0		5.25 E	
Sony Corporation	C,0	4.72	8, 5.25 E	12
Toshiba Corporation	C,0	4.72	5.25	12
5				
European Manufacturers (3)	0			10
Art Tech Gigadisc	0		FOF	12
Laserdrive, Ltd. Laser Magnetic Storage	0	4.72	5.25 5.25	12
laser Magnetic Storage	U	4.72	5.25	12

Numbers in table are diameters in inches.

TECHNICAL REVIEW

Optical data storage offers new capabilities that can be applied to a variety of storage problems. There are three classes of technology competing for assignments in various applications. These are:

- * Read-only optical disk drives
- * Write-once (non-rewritable) optical disk drives
- * Erasable (rewritable) optical disk drives

Most of the currently important technical issues are shared in common among these three technologies, including:

- * The need for lower cost, higher power, higher frequency lasers.
- * Undemonstrated media performance and stability.
- * Excessive media fabrication costs.
- * Lack of physical and recording standards for data interchange.
- * Requirements for low mass head design for improved performance and cost.
- * The need to develop system and application software.
- * Limited availability and performance of automated library sub-systems.
- * Inadequate standards for packaging and system interfaces.
- * Slow or inefficient error detection and correction.

All of these problem areas will see improvements over the next few years. As a result, the capabilities of optical disk drives will improve rapidly. The most significant product trend is the impending availability of erasable drives and media.

Most of the major technology innovations now in use in the magnetic disk drive industry have come from IBM. IBM developed all the basic disk recording technology, and independent firms merely adapted heads,

disks and other components to the specific drive configurations desired. However, due to IBM's lack of activity in development of small disk drives for several years, many variations in the technology have been introduced by others.

In optical recording, IBM has contributed little to date, although the firm has an active development program. Japanese firms, such as Toshiba, Hitachi, NEC, Sony and Fujitsu have developed the bulk of the optical technology in use today. In the U.S., Xerox, Control Data, Storage Technology, RCA and 3M have been the early leaders in optical technology, although these firms were, with the exception of 3M, slow to commercialize the technology. Philips has led the way in Europe.

Several firms are pursuing optical disk drive designs that can accept write-once, erasable, or read-only media. These products, often called "universal drives", will be initially implemented in the 5.25" form factor. The probable availability of large quantities of erasable media in 1988 increases the possibility that universal drives may be available in 1988.

Optical disk drive enhancements

Key enhancements to optical drive performance are likely in the following areas.

* Recording heads: The optical recording head is a relatively complex device incorporating the laser, detector, optics, and, frequently, a fine positioning mechanism. The inclusion of all of this functionality results in a relatively massive head assembly, which, in turn, either slows access time or increases the power required to position the head. For the first generation of write-once optical drives, which were used with document storage systems, the long average access time, typically in excess of 125 milliseconds, was not a critical factor. However, the desire of many firms to use the optical drives in data processing systems is creating pressure for faster average access time and less massive heads. Considerable work is underway at

many firms aimed at reducing the mass of optical head assemblies, and is beginning to bear fruit in such products as Maxtor's 5.25" erasable drive, which has a seek time of under 30 milliseconds. This performance has been achieved by using a split optic system in which only the objective lens, focus and fine tracking mechanisms are mounted on the moving carriage, substantially reducing the mass of the head.

The use of holographic optical elements to replace many of the heavier glass lenses and supporting structures is being explored by several firms. While providing simplicity, the transmission efficiency of holographic systems currently available is less than that of conventional optics, restricting the use of holographic optics to applications which require less write power at the surface of the media. Pencom International is now in limited production of holographic optical elements suitable for use in magneto-optic erasable drives and read-only drives.

Molded glass aspheric lenses will be used in smaller drives. These lenses, some of which are molded using plastic rather than glass, substantially reduce cost, weight and complexity of the optical path in the head. Some advanced techniques currently being explored at Osaka University have the potential to result in a monolithic assembly in which laser and lens are fabricated as a single unit.

Work is also being done with heads using composite laser assemblies that are capable of emitting separate read, write and erase beams through a common optical channel. These assemblies are intended to permit direct read-after-write operations in which the read beam can interrogate the disk immediately after a bit is written to insure that a write error was not made. Composite assemblies of this type are very difficult to fabricate and align. As error correction techniques improve, they may not be necessary to achieve adequate performance.

* Lasers: The amount of power available from the laser in the optical drive is a limit on how fast a spot on the disk can be written, and thus, a limit on the rotation speed and data transfer rate that can be obtained. Semiconductor lasers now in development appear able to double or triple the available power of lasers in use in current products. If these new laser products are found to be economically and technically suitable, a significant increase in data transfer rates and a significant decrease in latency should be obtainable within a few years. a result, optical disk drives are expected to be able to match the 10 megabit/second data transfer rates of small rigid disk drives by 1991. More powerful lasers permit the use of beam splitting techniques useful in improving tracking and direct read during write operations and will make it easier to use holographic lens systems with write-once media at higher data transfer rates.

A second limitation related to the laser is the spot size, which is a function of laser wavelength, among other factors. Work on shorter wavelength lasers may result in smaller spot sizes and an increase in bit density. Doubling the frequency halves the spot size, which results in a theoretical quadrupling of the storage density. However, large improvements are not anticipated in the near future due to the difficulty of producing a semiconductor laser that will operate at near blue wavelengths with adequate power and stability and at reasonable cost. A promising indirect approach is the use of a frequency doubler as reported by Matsushita Electric. This technique has yet to be shown suitable for volume production.

* Recording disks: Although write-once optical media was originally in short supply, the manufacturing capacity problem has largely been resolved as new facilities have gone into production. The erasable media now being introduced along with erasable drives this year is all of the magneto-optic type, and will probably be available in adequate quantities. Some drive manufacturers have noted that they expect magneto-optic media to be largely interchangable among drives, although cartridge and recording format standards must also be considered.

Most of the optical disks made to date use complex multi-layer designs and sputtering techniques to deposit the various layers, but manufacturing techniques have evolved to the point that several manufacturers can make disk media that can withstand the range of temperatures and humidities likely to be experienced without undue media degradation. At present, there is over-capacity among media suppliers in the aggregate. However, because optical disks from different manufacturers are not widely interchangable among drives, media availability is still a concern where specific pre-formatting is required and is available only from a single drive or media manufacturer.

Media manufacturers have yet to fully characterize the distribution of media defects so that designers of error correction electronics can design optimum chips. Media life is still a concern. Accelerated life tests indicate that media can be expected to have a useful life of 10 years or more, but there is no field experience of actual lifetimes of this duration. Protection of the active layer of erasable media to achieve longer lifetimes still requires further improvement. Basic problems were resolved by late 1987, but the complexity of manufacturing operations for magneto-optic media still causes significant yield problems.

Some innovative products, such as the dye based disks offered for use with the Pioneer and Ricoh write-once optical drive, offer potentially lower costs and improved environmental stability because the active layer has no metal components subject to corrosion. Erasable dye based media is being investigated as well, but the number of write/erase cycles

demonstrated has so far not exceeded 10,000 cycles. The mid-1988 announcement by Tandy of erasable drives and media using dye based technology, while very premature, pointed out the utility of even limited erasability media for consumer and some computer based applications.

Most of the substrates used so far have been plastic. However, the ability of glass to provide smoothness, freedom from distortion at high rotation rates, minimal optical dispersion and superior environmental protection is causing this material to be seriously evaluated as a substrate material. While glass substrates are expected to be much more expensive than plastic, a factor discouraging use, their potential for use in new generations of rigid disk drives suggests that economies of scale could develop sufficiently to make them attractive for use in optical media. There is evidence that glass substrates, being smoother, result in substantially improved error defect rates, which in turn can reduce drive latency due to error correction time.

The limitations of plastic for larger diameter and high stability disks may encourage the use of glass. Media produced for the LMS 12" drives, for instance, uses glass substrates. In mid-1987, Sharp announced erasable optical disk drives using glass as a substrate. The 5.25" erasable drive sold by Matsushita Communication Industrial Co. uses a glass substrate, and it is likely that other erasable drives will also make use of glass.

* Head positioning methods: The track density achieved on an optical drive is much higher than that obtainable on a magnetic disk drive because most optical drive designs use the pregrooved substrate as a device to provide tracking information to the head positioning servo. Some designs, such as those favored by Art Tech Gigadisc and Laser Magnetic Storage, use an embedded servo technique for fine tracking. There is considerable controversy as to which approach should be considered the standard approach. The two formats are not interchangable in present drive designs.

Drive manufacturers have not been able to come to a consensus as to a standard approach, and the result has been extended argument in standards committees, confusion and irritation on the part of prospective OEMs, and a significant contribution to delays in the growth of the market for write-once optical drives. The dispute has now been extended to erasable drives. However, the leading suppliers have so far elected to go with the continuous tracking format. While there may be an extended delay in formulating an official standard, there is a fair chance that the continuous tracking format will become a de facto standard.

Major increases in track density in the next few years are not expected. For most products, it will remain in the range of 15,000 to 20,000 TPI. However, as manufacturers go to higher rotation rates to improve latency and transfer rates, it will be necessary to redesign tracking and focusing servo systems to operate at higher bandwidths.

* * Packaging: Most small optical drives are being packaged to fit into a standard 5.25" form factor so that they can be mounted in a personal computer easily. The next generation will offer half-height profiles. The first such products were CD-ROM drives, such as the ones introduced by Matsushita Electric and Toshiba, but half-high write-once and erasable 5.25" optical drives are expected eventually. Ricoh has already announced a half-high write-once model. The 3.5" erasable drives will universally fit into a standard 41 mm high space.

There is less packaging pressure on larger diameter products, but it is important for these drives to be designed in a way that enhances their use in automated library subsystems, or at least, does not detract from it.

Because of IBM's PS/2 personal computer introduction, there is likely to be increasing emphasis on the 3.5" form factor. This will impact erasable drives, which might substitute for tape drives in the 3.5" form factor. There is also potential impact on the CD-ROM product area. CD equipment in a 3.5" form factor has been discussed by Sony and other Japanese producers, and the computer industry move to 3.5" may spur development of a 3.5" CD-ROM drive.

Many larger diameter drives are table-top or rack mounted. 12" products are typically rack mounted as are the 8" units now beginning to appear on the market. 8" drives may displace 12" drives in some document storage systems, but interest in the 8" form factor seems to be concentrated among producers of standalone document storage systems or industrial systems rather than with small system manufacturers. Suppliers of larger data systems and subsystems will prefer to remain with the 12" size because of its larger capacity per media unit. This leaves a relatively narrow niche for the 8" form factor at present, but as 5.25" designs top out in terms of available capacity per disk, 8" designs may look more appealing.

Several firms are working on write-once and erasable drives using the 4.72" CD-ROM format. The existence of such a product is looked upon with disfavor by many potential CD-ROM publishers, who are concerned that piracy will become a problem if copying is made too easy. The experience of the software industry suggests that these fears are valid, and the availability of a writable CD format product may discourage publishers and slow industry growth. Nevertheless, drive manufacturers will continue to investigate the CD format and one manufacturer, TDK,

has stated that it is interested in providing write-once media for the CD format. Products may go into production in 1989.

- * Interface: The most common interface encountered on optical drives is an interface to the IBM PC/AT. SCSI is also frequently offered on larger drives intended for use with multi-user or document storage systems, and there has been some work done on a modification of the ESDI interface to support optical drives. Drives used in proprietary systems--largely of Japanese manufacture--have frequently used a proprietary interface, but as these and other drives make their way into OEM markets, the standardized interfaces will be the most common.
- * Software: Erasable optical disk drives will appear to a system much the same as a magnetic disk drive, so the preparation of system software that supports an erasable optical disk is a routine task. However, software support for a write-once drive is a task of formidable magnitude. Lack of appropriate software is one of the factors that has slowed the acceptance of write-once optical drives. While drive manufacturers will be expected to supply such basic software items as routines that link the drive to major operating systems, manufacturers of complete systems or storage subsystems will find that they must do the bulk of the software themselves or contract the work to a third party.

Some firms have incorporated sophisticated firmware in their drives to avoid degradation of throughput caused by error correction, write verification, bad sector rewrites and other delay factors. While this does not affect the raw data transfer rate to or from the drive, the observed throughput can increase by as much as a factor of 10 over a drive without such features.

Software for CD-ROM preparation and retrieval is becoming less difficult to locate. In many cases, the software will be loaded on the CD-ROM along with the published material. As much of the base of CD-ROM published works will be of a textual or database nature, publishers must obtain appropriate and efficient text search or database search software. A few software specialty houses, such as TMS, Inc., and Bluefish, recently acquired by Lotus Development Corp., have begun to make such programs available. Hewlett-Packard, in mid-1988, announced that it would supply a retrieval package to help its customers develop CD-ROM applications.

* Standards: Physical standards for CD and for CD-ROM were initially jointly set by Sony and Philips. The initial joint design was for an audio consumer product and this effort by two major firms was sufficient to establish a de facto standard. The subsequent definition of the CD-ROM spec drew heavily upon the earlier design, and also became a de facto standard. In early 1986, Sony and Philips released an additional specification called CD-I (CD-Interactive) which defines a free-

standing appliance rather than a computer peripheral. No hardware is expected until late 1988. The announcement of the CD-I specification confused the market, especially the publishing segment, and delayed the release of published materials in the CD-ROM format. CD-I is more likely to appeal to the consumer marketplace than achieve success as a computer peripheral device.

Recording format standards for CD-ROM have been prepared under the aegis of the High Sierra Group, an ad hoc organization consisting of several firms concerned with CD-ROM. This proposed standard was submitted in mid-1986 to ANSI to begin the formal process of standards development. The work of the High Sierra group moved through the formal standards making process relatively quickly, and after only minor changes became ISO standard 9660 in 1988. The format defined is applicable to both CD-ROM and CD-I, and the commonality provided should encourage publishers to resume their CD-ROM publishing efforts which may have been delayed by the uncertainties caused by the CD-I announcement.

Physical standards for other types of optical drives are not as advanced, and lack of standardization is delaying acceptance of optical drives by OEMs. The ANSI X3B11 technical subcommittee has submitted an unrecorded media standard for 5.25" write-once disks for ISO approval. It originally was intended to encompass only the continuous tracking servo approach, but the price for getting this through the committee was an agreement to also submit the sampled servo approach for inclusion in a "dual standard" at a later time. ISO has embraced both approaches.

It was hoped by many that IBM's announcement of the 3363 would provide a stimulus for the committee to move more rapidly to a standard lest the committee be preempted by user acceptance of the 3363 as an industry de facto standard. The lack-luster performance and relatively low acceptance of the IBM drive didn't impress committee participants very much, so while IBM may have set a de facto standard for 200 megabyte drives, there was no impact on the content of the ANSI group proposal.

The standards efforts of the various national standards groups have resulted in ISO draft standards, number 9171-1 and 9171-2, covering the 5.25" write-once cartridge and both of the proposed servo formats. Unfortunately, the dual format remains a confusion factor to OEMs considering inclusion of optical drives in their systems, and is one of the factors delaying final approval of the draft specification.

At present, there is no standardization in any other size. There are already so many 12" drive designs in the field that standardization of this size is unlikely in the near future. Although there have been some efforts, notably the convergence of the Optimem and Art Tech Gigadisc designs for commonly usable

media, the diversity of existing designs makes it difficult for most manufacturers to agree to changes because of the major costs of product redesign. New generations of 12" drives may be standardized to a greater degree, as working groups have been set up within the American X3B11 subcommittee and the Japanese SC23 standards subcommittees to consider standards for newer products.

Standards for erasable drives and media have been proposed and are now being actively discussed within the various national standards groups. These include both 3.5" and 5.25" formats, but are unlikely to be available before 1989. The 5.25" standard effort is bedeviled by the same servo format arguments that hampered the write-once standards effort, while the 3.5" standards are mired in disputes about what the disk diameter and cartridge thickness should be, as well as the format issues.

- Libraries: Random-access libraries, commonly called "jukeboxes", are devices that automatically pick, load, unload and refile media units for an optical disk drive. While not part of the drive, they are frequently associated with the drive in high-end archival systems where very large amounts of data must be accessed and maintained on line. A library unit may store from ten to over 200 disk units: Typical retrieval and load time are in the order of a few seconds. Some of these devices have multiple picking assemblies so that access/load operations can be overlapped. The original libraries were too expensive to be attractive for use with lower capacity optical drives. However, small optical drives are beginning to receive library support and to be offered for use in departmental systems. It is likely that less expensive, lower performance libraries will become available in the future. It is also quite likely that a random access disk library will be developed for CD players: If so, this product will migrate to the computer world as an accessory for the CD-ROM. One early model of a CD-ROM library unit was displayed at the Microsoft CD-ROM conference in March, 1988.
- * Error correction: Error detection and correction (EDAC) will continue to be required to deal with the relatively high defect density of optical media. The techniques and designs developed to deal with this problem in optical storage may also migrate to the magnetic storage arena as storage densities increase and the impact of small physical defects on magnetic media become proportionately greater. Error correction can be implemented in chip form. This is the case for CD-ROM already, and ECC chips for other optical drives have been prepared by several firms.

There is still some controversy as to which algorithms should be used for the ECC function. At the present time, standards efforts in the U.S. lean towards endorsing the use of long-distance Reed-Solomon codes for the purpose of error detection and correction in read/write drives. Some Japanese firms have favored product codes, a method of performing error correction on a

multi-dimensional data array, and the issue is still unresolved. At least two firms in the U.S., Cyclotomics (an Eastman Kodak subsidiary) and Data Systems Technology, are developing algorithms and chips that will perform the bulk of the error detection and correction process, so the implementation of these functions should not be onerously expensive. Both of these firms are using Reed-Solomon codes.

Error correction is a complex process and requires an amount of time that introduces significant delays in data transmission from the drive to the host computer. Overall performance can be greatly improved by efficient on-the-fly error correction implementations. Laserdrive has already developed such a product, and other firms are expected to offer this feature in order to gain competitive advantage.

Optical disk technology and applications

Those optical storage technologies with outstanding strengths for specific applications will be successful in developing selected niche markets in the short term. Larger markets will develop as product capabilities, industry infrastructure, and product costs improve. Today's leading candidates for commercial success are discussed in the following sections.

* Read-only optical disks: The read-only optical disk category is dominated by the CD-ROM. Storage capacities of 550 to 600 megabytes are typical of these products. CD-ROM technology borrows heavily from the designs of the 4.72" CD audio players now in volume production. CD-ROM acceptance benefits from industry agreement on the CD standards developed jointly by Sony and Philips and upon the recording format standard proposed by the High Sierra group. In addition to the 4.72" CD-ROM, which is limited in performance, high performance 12" read-only drives are being shipped by Reference Technology. Other formats for optical read-only memory (OROM) have also been proposed, notably a 5.25" format, but have aroused little interest.

While it is possible to use properly designed read-only media with write-once drives, and 3M and other companies have proposed such media in a 5.25" format, the low costs of the CD-ROM relative to read-write drives make it unlikely that read/write drives will significantly inhibit the growth of the CD-ROM market. Conversely, read-only products other than CD-ROM are unlikely to be of great interest except for a limited number of applications dependent upon drive performance.

Most read-only optical drives will be used with small systems to provide personal access to large amounts of information. The success of read-only optical disks, in general, depends upon the existence and timely development of a data base publishing industry willing to make use of the CD-ROM format to support its clients. As of mid-1988, there were still relatively few titles (about 200 titles in a fully productized, commercial status) available on CD-ROM, and of these, only Microsoft's "Bookshelf" appears to have any prospects for broad acceptance. Apple Computer's announcement of a CD-ROM drive for its MacIntosh line will probably stimulate much new publishing activity aimed at the Apple user.

Another significant factor is the need to have a common standard for recording format that allows disks to be interchanged between systems. An ad hoc group of companies has prepared such a standard and submitted it to the appropriate standards committees, where it is now in the final approval process.

* Non-reversible optical disks: The first optical disk recording systems to enter the market are "non-reversible" or "write-once" systems. A few systems with optical drives were sold in Japan in 1984, but it wasn't until 1986, after many years of costly development programs undertaken by several European and Japanese manufacturers, such devices began to move into a firm production status.

Because they have track densities typically in the range of 16,000 tracks per inch, write-once drives are capable of higher areal densities than magnetic recording techniques now in use. Some drives can provide several gigabytes on a single removable disk. Smaller drives are being used in mass storage systems which access large numbers of optical disks under system control.

Although not yet demonstrated, advocates of the various types of optical disk media technologies believe that their disks will provide archival lives which equal or exceed those of magnetic media, with 10 years being a commonly encountered specification for archival life of the media. Lifetime is limited by the gradual appearance of defects on the recording layer due to the corrosive effects of water and oxygen on the metal films used in the recording layers of the media. The termination point of media lifetime occurs when the error correction capability of the drive is no longer capable of coping with the gradually increasing media defect density. Some recently introduced media based on dye or dye-polymer designs have no metallic films and are expected to be more corrosion resistant than the original generation of metallic films. Other optical media using platinum or tin alloys as the recording layer may also become popular because of their corrosion resistance.

In broad terms, two kinds of systems will be offered: a) document/image storage, and b) data storage systems. Systems intended to store images of documents were early entries to the market in Japan, offered by Toshiba, Matsushita Electric, and others. The early emphasis on optical document storage systems in the Japanese market is explained by the extremely complicated Japanese language. Since most business communication and records are in handwritten characters, the Japanese emphasis first on copying machines, then facsimile transmission, and now optical document storage systems is understandable. At this time, it does not appear that optical document storage systems will be able to compete on a price per image basis with microfilm. However, the fast and convenient access to stored images provided by optical disk systems will probably create a major place for them in the emerging office automation market. As an example, at the 1988 AIIM conference, many firms displayed small and large optical disk based systems designed to supplement or replace microfilm systems used for record management. Similarly, NEC has achieved some success with image storage systems for the law enforcement market in the U.S.

Data storage systems have been late to develop, partly because of more stringent demands upon the media and the difficulty of developing a drive with performance suitable for data processing applications. Optical data storage systems and disk drives from a variety of firms, including Laser Magnetic Storage, Shugart, Optimem, ISI, Art Tech Gigadisc, Hitachi, Toshiba, NEC and Sony are now being shipped in modest numbers. These firms have identified a number of target applications involving databases which are infrequently or never updated, and for which a write-once system would not be at a disadvantage -- such as stock market history, legal files, seismic data, banking transaction logs and law enforcement records. Replacement of magnetic tape for general archival storage is also high on the target list.

To date, image storage applications have created the broadest demand for optical disk drives, perhaps because their slow performance is less critical than would be the case in a classic data storage application. While Storage Technology Corporation was unsuccessful in bringing its high performance 7640 product to market, it did succeed in setting expectations for the functionality of a high-end drive. The STC project has been cancelled and is now up for sale. The next generation of write-once optical drives will offer improved performance, with average access times in the 60-80 millisecond range for 5.25" drives. This improvement should enhance the attractiveness of the optical drive in data storage applications.

The write-once systems now available or entering the market use comparable, but differing technologies, with capacities per disk in the range of one hundred megabytes to over six gigabytes. The smaller capacity products are being marketed initially as OEM drives for use in small systems; larger capacity drives are being used in captive systems and by a few OEM purchasers.

Obviously, the market for this generation of optical disk systems will be limited to the niches which can tolerate nonreversibility. These niches do exist and the low cost per byte of optical storage will start to open selected markets to optical disk systems. In some applications, the ability of write-once storage systems to maintain an audit trail or indicate whether or not stored data has been modified is a significant benefit. Several major financial institutions have been running trials with optical storage library systems with generally favorable results: Significant installations will be made over the next 12 months.

Large automated libraries that provide random access to tens or hundreds of disks make the use of large scale optical storage potentially very attractive for banks, insurance companies and other organizations with massive records that must be easily accessed. But the markets will be specialized, with system manufacturers slow to act. Little displacement of magnetic disk drives will result in the foreseeable future. Some displacement of tape in archival applications is probable.

* Erasable optical disks: The possibility for real inroads into the market for magnetic disk drives exists with reversible optical disk systems, as the principal proposed technologies reach the status of a reliable production product. Magneto-optical recording has seen development activity for more than twenty years, and "phase change" optical recording has attracted considerable attention during the past few years. Most recently, erasable optical recording based upon dye-polymer technology developed by Optical Data, Inc., and a planned family of drives from Tandy has received attention.

Low-end erasable optical drives offer the promise of higher capacities and access times equivalent to those offered by many of today's small magnetic rigid drives. Such drives should be more reliable than magnetic disk drives due to the decreased chance of head crashes obtained through more head/disk separation, but are not yet able to offer the same cost/performance as magnetic drives. High end erasable drives await the availability of larger diameter erasable media, which is difficult to fabricate within the current state of the art.

Especially impacted will be magnetic tape. The ability to add an optical disk for backup using the same controller used for other system disks offers the system OEM an attractive opportunity to reduce system complexity and cost while simultaneously improving performance.

Most current magneto-optical development programs involve using a low power laser to change the magnetic state of the active layer on a disk. The laser raises the temperature of the active layer into the range of the Curie point while a magnetic field is present, causing individual magnetic domains on the disk to align with the direction of the external field. Changes in magnetic orientation are detected during reading, as the affected spot on the disk causes a small rotation in the polarized light reflected from the surface or transmitted through the disk. However, magneto-optical disks have not yet shown the ability to overwrite in place: A complete sector must be erased before the sector can be rewritten. While several approaches offer technical solutions to this problem, all seem to add undesirable complexity and cost to the drive or media.

Phase change optical recording involves a different type of amorphous coating, in which individual spots on the disk are changed by polarized light from a crystalline state, during which light is reflected, to a noncrystalline state, during which light is absorbed. Fujitsu has revealed a comparable process in which different crystalline states are used to vary reflectivity. Media stability with time, phase reversal time, and the number of possible write/erase cycles still represent problem areas for erasable phase change technology.

A third technology, potentially the least expensive to manufacture, is erasable dye or dye/polymer. As of yet, only limited success has been obtained with this technique because developers have not been able to demonstrate a large number of write/erase cycles. As a result of the Tandy announcement, much industry attention is being given to the possibility of marketing low cost drives with limited erasability media for use as a replacement for cartridge tape drives and some write-once optical drives.

Individual firms are also working on other proposed reversible optical recording technologies, but none of these are known to have overcome all of the problems, which have included: Slow completion of the reversal cycle, limitations on the number of reversals before degradation, poor shelf life, and low recording density.

Two other interesting, but low probability technologies have commercial possibilities. One is an erasable recording process based upon the micro-deformation of a thin metal film as the result of laser irradiation. When irradiated at a higher power level, the deformed spot assumes its original shape. The films involved are typically Ni-Ti or Cu-Zn-Al alloys. The approach, which is being developed by Optek Corporation, involves shifting the energy level of electrons in a material which holds them in

a stable state for long periods in either the high or low energy state. A visible wavelength laser pulse moves an illuminated area to a high energy state. An infra-red laser pulse causes the electrons to revert to the low energy state, emitting light as they do so. The presence or absence of light in response to a read (infra-red) pulse yields a bit of information. The process is infinitely reversible. Neither approach is close to being in a manufacturable status.

Magneto-optical storage, however, is close to being in a manufacturable status. Most of the technical problems have been overcome by the U.S., Japanese or European companies working in the area, and a few of these firms have committed to the heavy investment required to establish volume production capability. Technology and product announcements of drives in 3.5" and 5.25" formats have been made by Verbatim, Maxtor, 3M, Sony, Sharp, Olympus and several other Japanese firms. A few of these firms will manufacture magneto-optical drives and media in volume in 1988 or 1989. Others, including Hitachi, have revealed the existence of development programs. While media and drive producers have concentrated upon magneto-optical recording, phase change technology could follow in a few years if acceptable stability, write/erase cycling and producibility are feasible.

Competing technologies

In making technology comparisons, it is important to remember that all technologies evolve and must be considered as "moving targets".

Almost all forms of data storage have shown consistently improving bit storage density, track density, lower power requirements, faster access times, more intelligence and smaller size. Much of the experience gained in developing magnetic disk drives is applicable to the design of optical disk drives, and it appears that some techniques used by optical drive designers may be applicable to the design of magnetic disk drives. This type of cross-fertilization hastens the development of both technologies.

Because development is a slow process and acceptance of a new product does not occur overnight, displacement of existing products by the new optical products will be far from instantaneous, even where the optical product is highly suitable for a given task. The following sections review the various contenders and discuss expected progress in the years ahead.

Magnetic disk drives

* Rigid disk drives: Rigid magnetic disk drives are the mainstay of today's auxiliary storage devices. Except on the lower end of the capacity and performance range, they appear relatively immune from serious displacement by optical drives over the next few years. The relatively high mass of the optical drive head makes it quite difficult for optical drives to match the access time performance of today's voice coil magnetic drives. However, improvements in head technology have made it possible to meet or improve upon the access time performance of most stepping motor rigid drives. Another factor to consider is that the typical optical drive has only one data surface under the head at any one time, while a typical magnetic drive has several surfaces available, reducing the time required to access data.

Magnetic disk drive technology has continued to improve. By the time the optical drives improved performance to the point where they could offer 40-50 millisecond average access time on a 300 megabyte drive, magnetic drives evolved to the point where

sub-25 millisecond times on drives of the same capacity or larger were available from multiple manufacturers. It is unlikely, therefore, that the magnetic drive will be seriously threatened in its role as a high performance system disk.

For applications where removability is important, the advantages of using an optical disk drive to perform the combined functions of a tape drive and a rigid system disk drive, or to build large on-line data libraries, may outweigh performance considerations. Such applications can include data distribution, save/restore of data, or use as a system disk in a security oriented environment. Here, the erasable optical disk will make inroads on the uses of rigid magnetic disks. But for the general case, the cost of even a low end optical drive will substantially exceed that of a low end magnetic drive for some years to come, so mass displacement of magnetic disk drives by optical disk drives is improbable.

* High capacity flexible disk drives: It is within the capabilities of today's technology to fabricate a floppy disk drive offering over 30 megabytes of storage capacity by using media capable of 40,000 fci recording density and 2,7 RLL coding. Although such a product is not expected soon, when available, it could compete with the very low end of potential optical disk drive products. The market for personal computers has grown at a rapid rate, and shipments of small disk drives are keeping pace, creating a market for backup devices large enough to attract new product types.

The 10 megabyte 5.25" floppy disk drives announced by Eastman Kodak and Konica were not successful, but would have done better had the market not begun a rapid transistion to 3.5" drives and higher capacity 5.25" products not become available. Iomega has already begun shipping its 5.25", 20 megabyte Bernoulli disk drive and Data Technology Corporation announced a 20 megabyte floppy drive in 1988. Several smaller firms are working on 3.5" floppy drives with capacities in excess of 20 megabytes. But capacities in this range are only the beginning of the potential expansion of floppy drive capabilities. Two other significant rival technologies are waiting in the wings to boost floppy capacity.

Perpendicular recording for flexible disks has received considerable attention in recent years. Toshiba has announced a development project for a 16 megabyte, 3.5" drive based on barium ferrite as the recording material. In addition to Toshiba, Sony and Matsushita Electric have revealed programs to develop 3.5" drives and media using perpendicular recording.

By using a sputtered thin film on a Mylar substrate, disks for perpendicular recording could achieve linear densities of at least 50,000 BPI, but problems with head wear and stiction seem to be retarding efforts in this direction.

It is likely that the largest limitation to the development of markets for the very high capacity floppy will be media availability. Success would require that media be produced by the millions of units, which would be difficult with today's batch sputtering processes, and durability remains a problem for thin film media used with head in-contact floppy disk drives.

Another major problem facing the high capacity problem is that of incompatability. So far, none of the approaches being considered are interchangable with each other. It would be very unusual for a business area based upon removable media to be successful without widespread interchangability.

Another technology with yet unrealized promise for improving floppy capacities involves use of very small magnetic particles, not much longer than they are wide. Use of such particles in coatings with conventional binder systems could result in "isotropic" magnetic recording, in which many more flux changes per inch could be obtained than with conventional recording. The big advantage for this technique may be producibility of the media, with little to change in existing floppies but the magnetic particles. Presumably, existing coating lines operated by the several major floppy media suppliers could be used. The principal difficulty with isotropic media to date has been oversensitivity to thermal change, with the potential under some circumstances to lose recorded data. As a result, activity in the area of isotropic media is low at present.

An advancement of floppy disk technology that is receiving attention from a number of companies is the development of flexible media drives that combine optical and magnetic technologies. Iomega and several other firms have active development programs for such products. Such drives might offer significant low end competition due to favorable drive and media costs, although they may offer less in the way of performance.

Iomega and ICI have been working upon a joint development of an optical disk drive using flexible media. The 5.25" write-once drive uses the Bernoulli principle, as do other Iomega products, to position and stabilize the disk relative to the head.

* Stretched surface recording: SSR, as this technique is commonly known, was devised by the 3M Corporation over the last several years. It employs a disk composed of magnetically coated plastic film stretched across concentric cylindrical rings. The chief characteristic of this technology is that it allows a head to fly on an air cushion backed by a deformable surface that bulges slightly in the region under the head. This provides close head-media separation needed for high capacity but also makes the product head crash proof. Disk drives using this design technique could be produced in either fixed or removable format and can offer the same capacity as a small Winchester or optical drive. The media, however, will have a cost only 1/3 to

1/4 that of the rigid disk media in current or projected use. The cost compared to optical media is even lower. Several firms have worked with 3M on various versions of products using SSR. If adequately supported and promoted by 3M, SSR has the potential to be a major commercial technology. However, it does not currently appear that 3M is providing major support to this development area.

Alternative optical devices: cards and tape

* Optical cards: The optical card, announced in 1981 by Drexler Technology Corporation, offers up to 4 megabytes of read-only or write-once storage contained on a credit card sized plastic substrate. The cards will most frequently be used by insurance or medical organizations for client/patient record keeping. The card format allows ready transportation and read back of large volumes of information. The card is capable of withstanding considerable handling and is suitable for transport by individual patients. Other applications include software distribution, security/access control, and programming of numerical control machines and other industrial automatic equipment. Because of its relatively limited capacity and/or performance, the optical card is not a competitor to the optical disk drive.

An early program using an optical card with 2 megabyte capacity was established at Health Management Services, a subsidiary of Maryland Blue Cross/Blue Shield, but concerns about media multiple sourcing have caused some delays. Drives for this program will be made by Canon. Canon, Matsushita Electric Industries and Toshiba have all indicated that they would offer an optical card reader as a peripheral device for small computers. These three firms and seventeen others are all licensees of Drexler Technology. Most other major prospective users, however, are likely to wait to see how the Maryland program goes before making major commitments to the use of optical cards.

The write-once format and limited capacity of the Drexler card will limit it to specialized applications. The cost of the drive is unlikely to decrease below the cost of a floppy disk drive, so the optical card is unlikely to displace the large number of floppy disk drives widely used for software distribution. The optical card will make its mark in the development of new applications rather than in the penetration of existing uses of storage devices.

In 1986 Optical Recording Corporation, a Canadian firm, announced optical card technology capable of storing 200 megabytes in a credit card size format. The recording layer is a metal/dye combination. Development of drives and controllers suitable for use with the card media is yet to be done on a commercial scale, and the firm is attemping to obtain funding.

* Optical tape: Optical tape drives, still in a developmental stage, represent another potential solution for those needing a way to stably store large amounts of archival data. So far, only write-once technology has been shown to be feasible for these devices. While tape devices are inherently less capable of fast access to data than are disks, they do provide substantially greater capacity than tape in a single media unit, eliminating the need to handle as many media units per volume of data accessed. So far, only a few firms have been active in the optical tape field. The best known are Docdata N.V., which has been developing a 6.2 gigabyte tape drive for use with IBM compatible tape controllers, and Laserstore, which has been working on a 2.5 gigabyte product. The Laserstore product will have a SCSI interface and be packaged in an 8" form factor. CREO Products, a Canadian firm, has been working with ICI on an Optical tape drive. The optical media, slit instead of punched, is similar to the media being supplied by ICI to Iomega for its optical flexible disk drive development program.

Magnetic tape drives

* High performance tape drives

Magnetic tape drives are shifting away from the reel-to-reel format in favor of cartridge formats. The IBM 3480 is setting a new standard for high end tape drives and imitators are beginning to appear. 3480 class products are competitive with the lower end of the optical disk product lines in terms of capacity, but are inferior in terms of average access time. At present, they can offer erasability, which the optical disk drive cannot. However, as erasable optical disk drives become available, they have the potential to displace a significant fraction of the tape drives used for save/restore applications.

Storage Technology Corp. has introduced an automated tape cart-ridge library that uses standard IBM 3480 type tape cartridges and can hold up to 6000 tapes. This product appears to be of great interest to many firms. It will not be seriously challenged by optical drive based systems until IBM introduces an anticipated 5.25" erasable disk based library storage system, possibly at the end of the decade.

Helical scan tape recorders offer some prospect of competition for archival and save/restore applications. A variety of recording formats, all incompatible, are being offered, including modified VHS videotape recorders, 8 millimeter cassette, and DAT (digital audio tape). Seven companies are currently offering helical scan recorders. All of these products offer large capacities and a low cost per bit stored, but suffer from relatively long access times as do all tape storage systems. For most of them, data transfer rates are unimpressive, lying in the

150 to 300 kilobyte per second range. Because all of these technologies are based upon consumer equipment designs, media is widely available and some benefits in terms of design and materials can assist redesign of the consumer products as computer peripherals. Nevertheless, significant redesign is required to transform consumer grade helical scan tape products into reliable computer peripherals.

Lack of standardization, with all of its implications, will probably depress sales of all of the helical scan competitors, with the possible exception of DAT. Much as CD-ROM has benefited from the sales and technology of CD audio players, the data version of DAT should also benefit as consumer product sales grow. However, it remains to be seen if data DAT can meet the prices established by cartridge tape, high capacity floppy disks and low end optical drives.

High speed reel-to-reel tape drives will remain in use in some installations where libraries of reel tapes exist that the user does not wish to convert to cartridge or optical disk format. These devices have relatively slow average access times and take up considerable space relative to cartridge or optical techniques. The media is relatively bulky compared to tape cartridge or optical disk formats, and are not as well suited to automated handling by automated library devices. For these reasons, reel-to-reel tape is expected to phase out and be replaced by tape cartridge devices such as the IBM 3480 or by optical disk storage in high-end applications. Most installations will retain some reel type drives for purposes of data or program interchange or for backward compatibility, but they will receive relatively low usage.

* Low performance tape drives

Cartridge tape products have been increasing in capacity and performance since their introduction in the 1970s. Three tape widths are in use: .15", .25", and .5". Capacities range from 4 to 100 megabytes in the .25" and smaller formats, and new products are evolving to 125 megabyte capacities in 5.25" form factors. The .5" tape cartridge drives will offer 240 megabytes in a 5.25" form factor. Some manufacturers are adopting the physical format of the 3480 cartridge in their drives but not the recording format; such products will be less expensive than the 3480 but will not offer media interchangeability with IBM systems.

These products are threatened to some degree by write-once technology, and will definitely be threatened by small erasable optical disks offering similar or greater capacity at equivalent prices. The disk products also have the advantage of being able to share a controller with the disk drive being backed up, resulting in overall cost savings for system OEMs. Given the early state of optical technology, displacement effects won't be felt for several years.

The primary use of low-end cartridge tape products is to back up rigid disk drives. They are also occasionally used for software distribution, especially for multi-user microcomputer based systems. Because the price of optical media is expected to be several times that of cartridge tape media, the use of optical media for software distribution will be retarded until media costs are approximately equivalent. Since software distribution tasks rarely require the entire capacity of the media unit, the extra capacity of optical disks is not necessarily an advantage. Most programs load from the distribution media sequentially, and random access is not as important a consideration as it would be in general purpose storage/retrieval operations.

Low performance reel-to-reel tape drives are currently used for data logging, for program and data interchange, and for hard disk backup on minicomputers and some multi-user microcomputers. These products are relatively expensive and bulky, and are vulnerable to gradual displacement as optical storage devices and high capacity tape cartridge devices come into wide use. The tape devices will continue to prevail where access time is not a major consideration: Access time insensitivity is characteristic of data logging applications.

Bubble memories

Bubble memories today are not serious competition to optical memories. 4 megabit chips are available today, with 16 megabit chips expected by 1991. 64 megabit chips are expected to be the next step, but a period of several years will be required to work out all of the manufacturing technology. They are unlikely to be available until after 1995. Chips of this capacity conceivably could be used in arrays that might eventually be capacity competitive with low-end optical and magnetic disk memories, although it is highly unlikely that bubbles can compete on a cost per bit basis.

Bubble technology bit density theoretically can be extended beyond that achievable with optical or magnetic technology if VBL (Vertical Bloch line) storage proves to be feasible as a manufacturable technology. Much of the fundamental exploratory work on VBL is being performed at Carnegie-Mellon University and Kyushu University, but some industrial exploration is happening at NEC, Hitachi, Magnesys and Sony. It will be at least 5 years--and probably 10--before this technology is used in very

large capacity arrays. If feasible, however, the inherently parallel organization of bubble memories promises to bring the equivalent of head per track performance to very large capacity storage devices. Such devices would be formidable competition to low end optical and magnetic disk storage.

At the present time, bubble memory is used almost entirely in military, aerospace, and harsh environment industrial applications. While the most typical modular capacities are in the 720 kilobyte to 1.2 megabyte range, customized packages of up to 40 megabytes can be purchased at a cost of \$5000 per megabyte.

DEFINITIONS

Many basic terms have varying meanings within the computer industry, depending upon the role of the person speaking. In this report, such terms are used in the way most disk drive manufacturers use them.

MARKET CLASSIFICATION

Market class is used here, arbitrarily, to differentiate captive, PCM and OEM disk drive marketing activities.

<u>Captive</u>: Disk drives manufactured internally or by a subsidiary of a computer manufacturer or system OEM, and sold or leased primarily for use with systems offered by the manufacturer. Note that the term is used to describe the products, not the manufacturer; drives sold to PCM or OEM market classes are classified accordingly. Most DISK/TREND statistics separate data between IBM captive and "other captive", but the term still pertains to the disk drives involved, not the manufacturer.

Examples:

- * Drives sold by Fujitsu to its computer system users are considered captive, if internally manufactured.
- * In the case of a joint venture disk drive manufacturer such as Laser Magnetic Storage, a joint venture of N. V. Philips and Control Data, LMS drives sold by Philips are considered captive, and LMS drives sold by Control Data are considered captive, PCM or OEM as appropriate.

Non-captive: Any public sale or lease by any disk drive manufacturer, except sales or leases of internally manufactured drives by computer manufacturers or system OEMs primarily for use with their own systems. Both OEM and PCM shipments are included in the non-captive category.

Example:

* Shipments by Hitachi are non-captive, except for drives sold with systems made by the parent company or other subsidiaries.

 $\overline{\text{PCM}}$: Disk drives sold or leased by "plug compatible manufacturers" directly to end users; shipments of internally manufactured drives by computer manufacturers or system OEMs are not included unless supplied in plug compatible configurations for installation with systems supplied by other manufacturers. This category is not limited to plug compatible drives installed on IBM systems. It includes any drives which are suitably equipped to be connected without additional hardware to systems of all types, including minicomputers and small business systems.

<u>OEM</u>: Disk drives sold through any non-captive distribution channel except PCM. Drives are normally sold to OEMs to be included in complete systems or subsystems; such drives are included in OEM totals whether or not the OEM actually manufactures the remainder of the system or subsystem, or merely assembles components and adds software. Sales by a disk drive manufacturer to a second drive manufacturer for resale are included only in shipment totals for the originating drive manufacturer, except when drives are produced on a contract manufacturing basis with a design supplied by the disk drive manufacturer which finally sells the drive to a third party. Distributors and dealers are arbitrarily defined as included in OEM totals.

GEOGRAPHIC CLASSIFICATION

Geographic analysis is based upon two regions: The U.S. and non-U.S. Together, these two regions comprise the worldwide market.

U.S. vs. Worldwide SHIPMENTS: Shipments are classified U.S. or worldwide depending on the shipment destination of a drive's first public sale.

Examples:

- * An OEM shipment by a U.S. drive manufacturer to a European system manufacturer is included in worldwide totals.
- * An OEM shipment by a Japanese drive manufacturer to a U.S. system manufacturer is included in U.S. totals.

U.S. vs. Non-U.S. MANUFACTURERS: Manufacturers are classified U.S. or non-U.S., depending on the location of the firm's headquarters, regardless of the location of individual manufacturing plants.

Examples:

- * ISI and Maxtor are considered U.S. manufacturers, even though each firm plans to manufacture some of its disk drives in non-U.S. locations.
- * Laserdrive Ltd. and LMS are considered non-U.S. manufacturers, since their majority ownership is non-U.S.

UNITS OF MEASUREMENT

<u>Spindles</u>: The basic unit in counting disk drives. One spindle or spindle disk assembly consists of the disk drive mechanism required to utilize a single disk or disk stack. All DISK/TREND unit totals are counted in spindles. Optical drives currently produced all have one spindle, but future drive configurations may include more than one spindle.

Revenue: Based on sales of disk drives alone, as normally sold by individual manufacturers. Controllers and library units sold as

separate units are not included, nor are spare parts or service. When individual disk drive models include integral control functions, such as may be required for the first drive on a string of drives, the actual value of the complete unit is used. Sale prices are estimated public sale transaction prices, whether at captive end user, PCM or OEM levels. Prices used for leased drives are on an "if sold" basis, at captive or PCM levels, as appropriate. All prices are in 1988 constant dollars.

<u>Forecasts</u>: Expected shipments and revenues for current or announced products in new production. Evolutionary improvements within existing formats are included, but completely new configurations or technologies are not included. Examples:

- * Enhancements such as double surface versions of existing single surface configurations and revised encoding schemes are anticipated in DISK/TREND forecasts.
- * Innovations such as non-standard size disks or new physical configurations may require establishment of new DISK/TREND product groups.

APPLICATION CLASSIFICATION

Shipments of disk drives are classified by the following computer applications:

<u>Mainframe/superminicomputer</u>: Disk drives attached to the processor or connected terminal of a mainframe or supercomputer.

Minicomputers/multiple user microcomputers: Includes business and professional uses, including network file servers, that typically serve multiple users. Examples: IBM System AS/400, HP 3000

<u>Personal computers</u>: Business and professional computers normally used by a single user. Examples: IBM PS/2 model 70, Apple Macintosh.

Office systems/workstations: Specialized equipment for dedicated use in specific office applications such as word processing or document storage. Examples: Wang OIS series, Toshiba TOSFILE.

Non-office systems/workstations: Specialized equipment for dedicated non-office applications such as design, order processing/shipping, industrial control, military, medical, law enforcement applications.

Consumer and hobby computers: Systems sold primarily to consumers for non-business applications. Examples: Commodore 64, MSX systems, most Atari models (Apple II is considered to be a professional/business microcomputer).

Other applications: Any application not included above.

READ-ONLY OPTICAL DISK DRIVES

Coverage

Examples of disk drives in this group include:

4.72" disk diameter (CD-ROM)

Hitachi JVC Laser Magnetic Storage Matsushita Electric NEC Nippon Columbia (Denon) Sanyo Sony Toshiba

CDR-1503S, 1553S, CDR-3500 XR-R1001, XR-R100 CM100, CM110, CM131, CM200, CM210 SQ-D1, SQ-D100, SQ-D101 PC-CD101, CDR 80, N5267-31 DRD-250, DRD-251, DRD-550, DRD-551 ROM-2500, ROM-3000 CDU-100, CDU-6100, CDU-7101 XM-2000A, XM-2100B, XM-3101B

12" disk diameter

Reference Technology

2000

A read-only optical drive is equipped only to read an optical disk. It does not have a laser capable of developing write power, a method to switch the laser into a writing mode, nor electronics required for writing data. The optical read-only drive is sometimes referred to generically as OROM (Optical Read-Only Memory), but almost all drives in this category are of the 4.72" CD-ROM type. The CD-ROM has become the dominant product type in this group because manufacturers could leverage off the design, manufacturing and standards infrastructure developed for the very successful CD consumer products. Early CD-ROM product packaging was not consistent with computer industry practice; early products were free standing or top loading types. CD-ROM packaging has moved rapidly to half height configurations, but the new wave of 3.5" disk drives used in personal computers will extend the life of the stand-alone package.

Market status

74,100 read-only drives were shipped worldwide in 1987, and all but a few were CD-ROM types manufactured by non-U.S. companies. Hitachi, Sony, and LMS were the major producers. About two-thirds of the units shipped in 1987 remained in the supply pipeline as of the end of 1987, which will have the effect of depressing the growth of sales in 1988. Reference Technology, a U.S. firm, is shipping very small quantities of a 12" read-only memory that offers more capacity and faster access times than CD-ROMs. This firm also remarkets the Hitachi CD-ROM.

Digital Equipment Corporation was the first major system manufacturer to offer a CD-ROM as a system peripheral. The LMS CD-ROM is available as a peripheral device for the Micro-Vax II product line. Other system suppliers including Apple and Hewlett-Packard have introduced CD-ROMs as part of their product lines, as the amount of published material in the CD-ROM format grows. Some, such as IBM, have demonstrated CD-ROMs on their systems and are considering offering a CD-ROM product, but have made no product announcement.

The market for read-only disk drives continues to be driven by publishers. Success for hardware manufacturers depends upon the availability and market acceptance of a wide variety of materials published in the CD-ROM format. As of mid-1988, fewer than 1000 titles are available, and of these, only about 200 titles could be considered as fully commercialized. So far, only Microsoft's 'Bookshelf' seems to have the potential to attract a significant business-oriented following. Other titles hoped to have wide appeal are in preparation by a number of publishers. As a group, manuals and product documentation seem to be the most widely used class of CD-ROM published materials to date.

The preparation of materials for CD-ROM publication can be time consuming and expensive, but systems and software to help prepare and format CD-ROM publications have become available, reducing both expense and risk to the publisher. Facilities for mastering and replicating disks are available and adequate, although most publishers would prefer to have shorter lead times available to them.

The cost of preparing the master copy from which CD-ROM replica copies are made has decreased to under \$3,000, an affordable level for even smaller firms. However, the cost of preparing (authoring) the material can be substantial. Some specialized equipment (authoring systems) are available to improve the mechanics of the process, but a well designed CD-ROM publication can cost hundreds of thousands of dollars and much time to compose. Replicated disk prices at the OEM level are \$3 or less per disk. From a production cost standpoint, the stage is set for rapid growth, but authoring costs and complexity remain a brake on growth.

Marketing trends

Forecasted 1988 worldwide unit shipments of 106,900 units will rise rapidly to 567,000 units in 1991. This is about the same level forecast for 1990 in last year's DISK/TREND forecast; market development has slipped by one year.

The CD-ROM, while more complex than a floppy disk drive, is not so difficult to make as to discourage an ambitious market entrant -- and Japanese firms, in particular, remain interested in new export opportunities. With nine firms competing for a limited market, CD-ROM drive prices will decline rapidly. Early average OEM prices were in the \$600 to \$700

range, declining to the \$500 range in 1987. The average price is expected to decline to the \$340 range in 1991.

The growth rate for CD-ROM sales will temporarily decline in 1988 as the overproduction of 1987 is absorbed. Strong growth is forecasted to resume in 1989, somewhat tempered by expectations of availability of write-once drives (CD-WO) in the 4.72" CD format. Some customers will prefer the flexibility of the CD-WO, especially if it can serve as a CD reader and a system backup device.

Personal computers and single user workstations will provide the dominant attachment opportunities for CD-ROMs in the next few years. Early sales of CD-ROM optical drives will be generated by system manufacturers (such as DEC, Apple, H-P and, possibly, IBM) and publishers or aftermarket subsystem manufacturers offering a package consisting of drive, software, published material and interface. Amdek, for instance, is distributing a package consisting of the Hitachi drive, Microsoft system software and the Microsoft 'Bookshelf' applications package.

As many drives will be offered with an IBM PC or SCSI interface, retail dealers will easily be able to add CD-ROM drives to PC systems once sufficient database and supporting software products become available. Because the majority of the PC market is in the U.S., and the U.S. is already a large market for specialized databases, CD-ROM sales will also be greatest in the U.S.

The CD-ROM market will be little affected by CD-I, CD-V and other variant CD formats aimed at mass consumer markets. Video capabilities of the type provided by the RCA DVI video compression chips may expand the CD-ROM's role in computer assisted training and education. The chips will be in volume production in 1989.

<u>Applications</u>

The read-only optical disk drive is best understood as a device that makes possible disk-based electronic publishing. The published content can be of broad general interest, such as a dictionary or atlas, or specific to a company, such as a manual or parts list. Databases currently distributed include Department of Commerce statistics, drug side effects, legal research materials, computer system and software documentation, construction materials catalogs, and selected professional publications. Text oriented databases are especially suitable for implementation on read-only memory. These include legal cases, encyclopedias and other educational materials, news files, technical papers and all types of reference works.

Electronic publishers must face the same site licensing and copy protection issues that are currently debated by software providers. Some publishers may defer product availability until they can define their multi-user access policies. Others will attempt (probably unsuccessfully) to prevent unauthorized access through copy protection schemes. The best protection may be the nature of the data: If it must be updated frequently to be useful, copiers may not find it worth the time and bother.

The dissemination of large amounts of static or slowly changing data in machine readable format is a logical role for optical drives, especially for the CD-ROM format. The low cost of mass replicated media and the ability of the drive to fit into the user and operating environments of personal computers and other small systems make this an attractive option.

CD-ROM also has the inherent capability to store and recover digitized images and audio, a characteristic which suggests many applications in the field of technical training, language instruction, and other educa-

tional uses. When it becomes available, the DVI chip set developed by RCA Laboratories may remove some of the technical barriers.

Still needed is an inexpensive, easy to use mechanism for transferring images or audio material to a CD-ROM document. Currently available equipment is too expensive to encourage small publishing projects, but inexpensive scanning/editing systems are expected within a year or two.

Currently, read-only drives appear primarily on micro-based systems, including individual personal computers and workstations. In the future, they will also be attached to department level network file servers and to large processors through microcomputer based file servers to provide access to CD-ROM data bases for mainframe and mini-computer use.

CD-ROM may also find a market in on-board vehicle navigation and dispatching systems. Several Japanese firms are investigating such an application, which could be useful for sales staffs, public service personnel, taxi drivers, urban planners, and public utilities. Interest also exists in the U.S. defense community.

Materials likely to appear in CD-ROM format will be concentrated in one of two application groups:

Electronic publishing

- * Large publicly available databases, such as those compiled by economists for use with econometric models.
- * Educational materials for languages, technical training, driver education and other curricula.
- * Indexed textual databases, such as information on drug toxicology, legal case citations, or bibliographies.
- * Maps, including those used for on-board vehicle navigation. Such systems could be used eventually in personal vehicles as well as commercial aircraft, ships and military vehicles.

- * Complete back issues of publications, indexed for easy subject analysis.
- * Financial industry statistics, such as stock price history, for use by brokers and analysts.

Intracompany data distribution

- * Directories, etc., for large organizations.
- * Catalogs, parts lists and product data.
- * Training materials, product documentation and service manuals. Some of these materials will be sold to customers using the products.

Technical trends

The technology in this product group is relatively stable, as it derives from the consumer CD player. The areas receiving the most attention are:

- * Integration of audio and video content into CD published materials.
- * Standards for file formats, so that disks can be used on any small computing system.
- * Average access times, which decreased below the .5 second range in 1986.
- * Improved error correction.
- * Programmable library units for CD-ROM drives. These may be based upon units being developed for automotive CD player systems.
- * Packaging of the CD-ROM disk in a carrier, or cartridge, that provides protection from scratches and prevents excessive vertical disk motion while the drive is in operation. Unfortunately, there are several cartridge styles proposed or in use, which is slowing the standardization effort.
- * Development of software to support use with major operating systems and application programs. Software for efficient searching of large data bases and text files is necessary to generate large sales of CD-ROM and is becoming available.
- * Cost reduction programs. Plastic molded lenses, for instance, are replacing ground glass lenses.

- Packaging of drives in half height format.
- * Development of SCSI and IBM personal computer interfaces.
- * Development of document preparation and other support software and systems for publishers preparing CD-ROM materials.

A significant unresolved standards area pertains to the design of the cartridge used to contain the disk. The cartridge holds the disk in place within the drive, preventing loss of focus due to vibration, shock, or mounting in other than a horizontal position, and permits the drive to be used in vehicles or to be mounted in a vertical position within a system enclosure. As of mid-1988, there is no clear industry consensus. Although most of the Japanese suppliers now use a common approach, LMS remains a major holdout for its own design.

As for other standards issues, the early establishment of the Sony/Philips de facto standard for CD-ROM established a basis for CD-ROM physical disk interchangeability and provided a mechanism for identification of a disk and files upon the disk. The High Sierra Group, an ad hoc task force consisting of a group of companies interested in CD-ROM, subsequently prepared a proposed recording standard and submitted it in 1986 to ANSI and ECMA for initiation of the formal standards-making process. This has now become ISO standard 9660, the existence of which should encourage the normally conservative publishing community to move forward with plans to publish in the CD-ROM format.

The standards debate has now shifted to the software arena. A standard user interface is highly desirable so that end users do not have to learn a host of different data retrieval formats. More standardized interfaces between data retrieval software, data, and user interfaces are also needed.

The packaging of CD-ROM drives has changed rapidly. In 1986, most of the drives shipped were not compatible with the full height and half high form factors that have been adopted for 5.25" magnetic disk drive products. However, most CD-ROM drives now in production are either full height or half high models: Matsushita Electric exhibited a half high CD-ROM at the 1986 NCC conference and other major suppliers subsequently did the same. The introduction of the IBM PS/2 family of personal computers confirmed an emerging de facto standard for 3.5" storage peripherals. There is some possibility of 3.5" CD-ROMs appearing in a few years, but the nominal shipment levels compared to floppy or rigid disk drives will probably force both system manufacturers and end users to be satisfied with external packaging for 4.72" CD-ROMs used with personal computers. It seems unlikely that retooling to obtain a 3.5" format will be economically attractive in the near term.

Most CD-ROMs will be offered with SCSI interfaces and host adapters for IBM personal computers. DEC is already offering the Philips CD-ROM as a peripheral for the Micro-VAX processor line, Apple is offering CD-ROM as a MacIntosh peripheral, and other system manufacturers are expected to offer interfaces to CD-ROMs on various systems.

System integrators are beginning to consider CD-ROM capabilities on file servers. As a result, there is interest in jukeboxes for CD format drives, which will be enhanced by the future availability of CD-WO. Prototype equipment was shown at the 1988 Microsoft conference.

Some manufacturers are considering a read/write version of the CD-ROM. The prospects for such a product are reviewed in the discussion of read/write drives with under 1 gigabyte capacity.

Forecasting assumptions

- 1. CD-ROM players will remain in production status in at least nine companies in 1988. The form factor will fit within the 5.25" half high de facto standard, but there will be no strong pressure for a 3.5" drive before 1990.
- 2. The formatted disk interchange standard for CD-ROM will be accepted almost universally by drive manufacturers and publishers, and the Japanese cartridge format will become the dominant form, even in the absence of a formal standard.
- 3. Non-U.S. suppliers will dominate the CD-ROM hardware market. There will be no significant U.S. production.
- 4. Increasing production volume and competition will reduce the quoted CD-ROM average OEM price to \$340 in late 1989. Most drives will have on-board controllers, and their \$25 to \$50 price increment is included in the above amount.
- 5. There will be a significant demand for CD-ROMs by system and subsystem integrators who will add them to specialized workstations, file servers, and memory subsystems.
- 6. CD-ROMs will appear on approximately 3% of the installed business oriented PC base and on less than 1% of the installed base of home and educational systems by the end of 1991.
- 7. CD-ROM growth will be impacted in 1990 by write-once drives in the CD-ROM form factor. However, no other form of read-only optical memory will seriously challenge CD-ROM before 1991.
- 8. The CD-I format will impact primarily the home and education markets. Hardware will not appear until the latter part of 1988 and there will be additional shipment delays while programs and published materials are prepared. CD-I will have relatively minor impact on the CD-ROM in the business market.
- 8. Media mastering and replicating capacity will be adequate and will not be a restriction on growth for read-only optical memory markets.
- 9. Automated libraries for CD-ROMs will be required to make CD-ROMs practical peripheral devices for mainframe and minicomputer systems. Such libraries will be available by 1990.

TABLE 8

READ-ONLY OPTICAL DISK DRIVES, ALL CAPACITIES

REVENUE SUMMARY

	198		DISK DR	IVE REVEN	SHIPMENT DESTINATION (\$M)Forecast					
	Rever		198	 88	198	rorec 89	19		19	91
	U.S.	WW	U.S.	WW	U.S.	WW	U.S.	WW	U.S.	WW
U.S. Manufacturers										
IBM Captive		,								***
Other U.S. Captive										
TOTAL U.S. CAPTIVE										
OÉM		,								
TOTAL U.S. NON-CAPTIVE										
TOTAL U.S. REVENUES							'			
Non-U.S. Manufacturers										
Contino	0	0.7	6.0	0 1	10 5	15.2	17.0	20 1	04.0	AC 5
Captive	.9	2.7	6.0	8.1	10.5	15.3	17.0	28.1	24.0	46.5
OEM	25.6	37.6	30.5	41.6	51.8	66.6	91.0	112.0	139.4	171.7
TOTAL NON-U.S. REVENUES	26.5	40.3	36.5	49.7	62.3	81.9	108.0	140.1	163.4	218.2
Worldwide Recap										
TOTAL WORLDWIDE REVENUES	26.5	40.3	36.5	49.7	62.3	81.9	108.0	140.1	163.4	218.2
									,	
OEM Average Price (\$000)	.516	.522	.425	.420	.370	.370	.350	.350	.340	.340

TABLE 9

READ-ONLY OPTICAL DISK DRIVES, ALL CAPACITIES

UNIT SHIPMENT SUMMARY

					PMENTS, BY SHIPMENT DESTINATION (000)						
	19 Shipm	187 Jents	19		19	tored 189	:ast19			991	
	U.S.	WW	U.S.	WW	U.S.	WW	U.S.	WW	U.S.	WW	
U.S. Manufacturers											
IBM Captive											
Other U.S. Captive				·							
TOTAL U.S. CAPTIVE											
OEM											
TOTAL U.S. NON-CAPTIVE											
TOTAL U.S. SHIPMENTS											
Non-U.S. Manufacturers											
Captive	.6	2.1	5.8	7.8	11.0	16.0	20.0	33.0	32.0	62.0	
OEM	49.6	72.0	71.8	99.1	140.0	180.0	260.0	320.0	410.0	505.0	
TOTAL NON-U.S. SHIPMENTS	50.2	74.1	77.6	106.9	151.0	196.0	280.0	353.0	442.0	567.0	
Worldwide Recap											
TOTAL WORLDWIDE SHIPMENTS	50.2	74.1	77.6	106.9	151.0	196.0	280.0	353.0	442.0	567.0	
								•			
Cumulative Shipments						•					
IBM Non-IBM WORLDWIDE TOTAL	71.5 71.5	101.1 101.1	149.1 149.1	208.0 208.0	300.1 300.1	404.0 404.0	580.1 580.1	757.0 757.0	1,022.1 1,022.1		

TABLE 10

READ-ONLY OPTICAL DISK DRIVES, ALL CAPACITIES

WORLDWIDE REVENUES (\$M)

BREAKDOWN BY DISK DIAMETER

	198	37	Forecast									
	Reve	nues	1988		198	1989		1990		1991		
	12"	4.72"	12"	4.72"	12"	4.72"	12"	4.72"	12"	4.72"		
U.S. MANUFACTURERS												
IBM Captive							·					
OEM												
TOTAL U.S. REVENUES		, 		 ,								
NON-U.S. MANUFACTURERS												
Captive		2.7		8.1		15.3		28.1		46.5		
OEM		37.6	, , , , 	41.6		66.6		112.0		171.7		
TOTAL NON-U.S. REVENUES		40.3		49.7		81.9		140.1		218.2		
WORLDWIDE RECAP												
Captive		2.7		8.1		15.3		28.1		46.5		
•		+800.0%		+200.0%		+88.9%		+83.7%		+65.5%		
OEM		37.6		41.6		66.6		112.0	·	171.7		
		+196.1%		+10.6%		+60.1%		+68.2%		+53.3%		
Total Revenues		40.3		49.7		81.9		140.1		218.2		
		+210.0%	·	+23.3%		+64.8%		+71.1%		+55.7%		
ANNUAL SHARE, BY DIAMETER	- -	100.0%		100.0%		100.0%		100.0%		100.0%		

TABLE 11

READ-ONLY OPTICAL DISK DRIVES, ALL CAPACITIES

WORLDWIDE SHIPMENTS (000)

BREAKDOWN BY DISK DIAMETER

	1987			Forecast							
<u>-</u>	Shipme	ents	198	38	1989		1990		1991		
	12"	4.72"	12"	4.72"	12"	4.72"	12"	4.72"	12"	4.72"	
U.S. MANUFACTURERS											
IBM Captive											
			·						. 		
OEM											
TOTAL U.S. SHIPMENTS			. 								
NON-U.S. MANUFACTURERS											
Captive		2.1		7.8		16.0		33.0		62.0	
0EM		72.0		99.1		180.0		320.0		505.0	
TOTAL NON-U.S. SHIPMENTS		74.1		106.9		196.0		353.0		567.0	
WORLDWIDE RECAP								•			
Captive		2.1 +600.0%		7.8 +271.4%		16.0 +105.1%	 	33.0 +106.3%		62.0 +87.9%	
OEM		72.0 +287.1%		99.1 +37.6%		180.0 +81.6%		320.0 +77.8%		505.0 +57.8%	
Total Shipments		74.1 +292.1%	 	106.9 +44.3%		196.0 +83.3%		353.0 +80.1%		567.0 +60.6%	
	-										
ANNUAL SHARE, BY DIAMETER		100.0%		100.0%		100.0%		100.0%		100.0%	

TABLE 12

READ-ONLY OPTICAL DISK DRIVES, ALL CAPACITIES

APPLICATIONS SUMMARY Percentage of Worldwide Shipments

	1987 Es	timate	1991 Projection			
APPLICATION	Units (000)	%	Units (000)	%		
MAINFRAME/SUPERMINI General purpose			22.1	3.9		
MINICOMPUTERS AND MULTI-USER MICROS Business and professional, including networks	.7	1.0	38.6	6.8		
PERSONAL COMPUTERS Business and professional, single user	70.0	94.4	357.1	63.0		
OFFICE SYSTEMS AND WORKSTATIONS Dedicated application	2.2	3.0	47.1	8.3		
NON-OFFICE SYSTEMS AND WORKSTATIONS Technical, distribution, medical, other specialized	1.2	1.6	91.9	16.2		
CONSUMER AND HOBBY COMPUTERS			5.7	1.0		
OTHER APPLICATIONS			4.5	.8		
Total	74.1	100.0	567.0	100.0		

READ/WRITE OPTICAL DISK DRIVES LESS THAN 1 GIGABYTE

Coverage

Examples of disk drives in this group include:

3.5" disk diameter

Maxtor Verbatim Fiji (Erasable) Mod-1 (Erasable)

5.25" disk diameter

Cherokee Data Systems Fuiitsu Hitachi

IBM

Information Storage Inc. Kawatetsu Advantech Laser Magnetic Storage

Laserdrive Matsushita Communication Ind.

Matsushita Electric Industrial Maximum Storage

Maxtor Mitsubishi Electric

Olympus Optical Pioneer Ricoh

Sanyo Sharp

Shugart Corporation

Sony

Toshiba

Sonv

Tracker M2505B

M-301S, OD 101-1

3363

525WC, 525 GB **KL200S**

510

OD810, OD820, OD840, OD850 JU-9400, JU-9500 (Erasable)

LF-5000, LF-5001

APX-3200

Tahiti (Erasable)

MW-5D1-11

ME-D5010E (Erasable) DD-8002, DDU-5001 RO-5041WL, RO-5040WL

SOF-M90

JY-500 (Erasable)

5984

SMO-D510 (Erasable)

WM-D050

8" disk diameter

Matsushita Graphic Commun. Pioneer

PF-10 DD-8001 WDD-2000

Two types of drives fit into this group: Write Once Read Many, (WORM) and Erasable (Rewritable). Provided that a drive is capable of writing and reading, it is classified in this group even if it can also be used with read-only media. When available, the CD-Write-Once (CD-WO) will also fit into this category. The read/write drives discussed in this section are

typically used with small computer systems of the mini and micro class and with intelligent workstations. As automated libraries (jukeboxes, in industry parlance) appear, they will also be used in departmental level mass storage subsystems.

Market status

1987 was only a modest year for shipment growth in this product class. IBM's hopeful entry into the market with the model 3363 drive turned out to be a non-event, due to uncompetitive product specifications, a high price, and lukewarm IBM marketing efforts.

1987 unit shipments were 17,400 units. Ricoh, ISI, Optotech, and IBM made significant contributions to production figures. Worldwide revenues amounted to \$46.7 million. While 1988 shipments from IBM will probably decline, new shipments from Laserdrive, Maxtor, Sony and other new producers will provide additional growth, forecasted at 44,600 units for 1988.

Most of 1988 shipments will be write-once drives. While the imminent availability of erasable drives will impact sales of write-once drives, system design-in cycles, software development time, and lack of standards will postpone high volume shipments of erasable drives until after 1988.

System manufacturers and integrators are now taking optical drives seriously. Both IBM and DEC have internal design programs and Unisys has adopted the Hitachi 12" drive for mainframe use. While 1987 shipments to integrators were modest, the system design activity that occurred in 1987 is resulting in a shipment upsurge in 1988 that will continue in 1989.

The most successful penetration of the system integrator market to date has been achieved through the combined efforts of Ricoh and Maxtor,

which has exclusive rights to market Ricoh OEM optical drives in the U.S. Maxtor's reach into the OEM arena put Ricoh far in the lead for 1987 shipments to OEMs. In the process, Maxtor received an education in the vagaries of the optical drive market place which will serve it well as it begins producing its own planned erasable drives.

Erasable drives are moving out of pre-manufacturing status, with shipments by Sony, Maxtor, and possibly Olympus expected in 1988.

Unfortunately, the Verbatim 3.5" development effort has slipped badly, so it appears that the Maxtor 3.5" erasable drive built by Seiko Epson may be the first 3.5 inch optical drive to actually ship in volume.

Media appears to be available in more than adequate quantity. Any of the major optical media producers have the capability to supply several times the current needs of the industry. Given the modest size of the industry to date, it would not be surprising to see some optical media manufacturers decide to withdraw from the market.

Marketing trends

Worldwide shipments of disk drives in this group are forecasted to accelerate, with 44,600 units to ship in 1988. In 1991, shipments are expected to reach 813,000 units. The preponderance of early sales consists of 5.25" write-once drives going to the add-on market, distributed through subsystem manufacturers. In 1988, this pattern is beginning to change: Many of the shipments by Laserdrive will reach users already packaged in Olivetti personal computers, and many of the Ricoh drives sold through Maxtor will go to system manufacturers to be included in complete systems.

Major Japanese disk drive firms, while developing and announcing 5.25" optical disk drive products, are expected to make relatively small efforts to develop the U.S. market until demand is stronger and standards issues are finally resolved. Others, such as Ricoh and Seiko Epson, will rely upon sales arrangements with strong U.S. storage products producers. Eventually, 12 to 15 competitors are anticipated. Some Japanese producers have concentrated on 8" drives in the less than one gigabyte range that can be used in office automation systems, but the thrust of the majority of Japanese firms is toward 5.25" drives with 300-400 megabytes capacity per side. Most OEMs prefer the 5.25" form factor, leaving the 8" drive of interest primarily for specialized industrial and office systems. Japanese manufacturers will also have to contend with new and existing firms based in the U.S., plus unfavorable exchange rates.

New competitors in this group have appeared in the last year. LMS announced its 5.25" write-once optical disk drive. Maxtor, one of the most formidable competitors in the high capacity 5.25" magnetic disk drive market, announced a relatively high performance erasable 5.25" drive in 1988.

Further entrants are expected. Some of the new players, such as Laserdrive, which is backed by Olivetti, have substantial financial resources and can be expected to be very effective competitors. Companies based in the U.S. will shift production offshore to remain competitive. Maxtor, IBM and Laserdrive, for instance, have some drive mechanisms made in Japan.

In 1989, disk drives using erasable media will ship in significant numbers, diverting growth from write-once disk drives. Both 3.5" and 5.25" configurations will be included, as shown below. It is also

expected that small quantities of 4.72" (CD-WO) write-once will begin to ship in late 1989, with erasable 4.72" drive shipments probably starting in 1991.

Projected Growth: Write-Once vs. Erasable Drives, 5.25" and Smaller

Worldwide captive & OEM unit shipments (In thousands)	5.25"	1989 4.72"	3.5"	<u>5.25</u> "	1990 4.72"	3.5"	5.25"	1991 4.72"	3.5"
Write-once	70.7	6.0		108.1	12.0		135.5	24.0	
Erasable	45.0		20.1	139.0		83.0	362.0	84.0	206.0
Total Read/Write	115.7	6.0	20.1	247.1	12.0	83.0	497.5	108.0	206.0

The large forecasted growth in 3.5" erasable drive shipments will result from an expected displacement of cartridge tape drives used with small systems for backup and save/restore applications. By 1990, 5.25" write-once drive growth will start to flatten as a result of competition from both 5.25" and 3.5" erasable drives. 5.25" write-once drive shipments will also be hurt by competition from CD-WO shipments in 1990.

Before 1990, it is unlikely that IBM will be in internal production of any optical disk drive. However, IBM's announcement of the 3363 placed it in the market as a major competitor, even though the drive mechanism is produced for IBM by Matsushita Electric. IBM is expected to introduce a small erasable optical disk drive of its own manufacture 2-4 years in the future. This drive will probably be offered as an adjunct to IBM's personal computers and advanced technical workstations, and also as the key element in a mass storage system. IBM's interim strategy of adopting a purchased mechanism is a low risk opportunity to gain experience in the optical storage marketplace.

The CD-WO is a proposed read/write drive in the CD-ROM physical format. Such a product, if based on the present CD-ROM mechanisms, would offer modest performance, high capacity and low cost. However, it will not offer any significant packaging advantage over 5.25" write-once drives, because the electronics will be sufficiently complex to require a full height package, at least for the initial products. Performance will not match the typical 5.25" drive.

While the anticipated low price of a CD-WO drive will generate sales, some publishers of data bases, fearing a recurrence of the piracy that has plagued personal computer software publishers, may discourage the development and marketing of a read/write drive in CD-ROM format. Others will welcome it for its capability to update a previously distributed database. Regardless of any perceived disadvantages, the writeable CD-ROM, or CD-PROM as it is sometimes called, will probably be on the market in 1989. Its low price will make it an attractive add-on for small computer users who need to back up or to update large data bases.

<u>Applications</u>

Write-once optical drives under 1 gigabyte have found applications as save/restore devices in microcomputer and minicomputer systems where interchange isn't required, but are used primarily as a method for storing images in office, medical, and other specialized systems. The erasable drives will find early use as disk backup devices, providing that they are price-competitive with tape cartridge drives. As performance improves to the level of current small Winchester disk drives, they may also begin to displace low end rigid disk drives in situations where removability is an advantage. A very important application will be as system file server

devices associated with an automated library. At least 20% of the 1989 production of drives in this class is expected to be used in jukebox subsystems.

Tandy Corporation's 1988 technology announcement of a low cost drive using limited erasability dye-polymer media aroused much (perhaps, too much) industry interest in the utility of limited erasability media for save/restore applications where a high number of write/erase cycles is not required. With annual small rigid disk drive shipments approaching the ten million unit mark and cartidge tape drive shipments near two million units, a low cost, functionally superior backup device should have good sales prospects.

In data processing applications, small optical drives will also be used for reference level storage, a new level in the storage hierarchy. Reference storage is defined as files that change infrequently but must be occasionally updated. On smaller systems, as much as 70% of disk file contents may fit this definition. Optical drives, slower than rigid magnetic drives but with tape-like capacity, fit this niche well.

8" drives have had some use in Japan, largely for stand-alone document storage systems. While they offer more capacity than the 5.25" drives, their larger form factor and higher price limit usefulness in many applications and it is unlikely that they will be as successful as 5.25" drives. However, as 5.25" drives reach the practical limit of capacity with currently available technology (probably about 800 megabytes per side), 8" drives may be seen as an acceptable compromise between size and capacity needs in a limited number of cases. Most OEM's will prefer to use multiple 5.25" drives.

The 4.72" write-once drives expected in 1989 can serve as a vehicle

for software and database distribution as well as for backup, providing that the cost of the drive and media is low. The writeability feature permits timely update of a previously installed database. Furthermore, the ability to write gives the database publisher certain security and anti-piracy options not readily available on read only media, in that individual disks or sections of disks can be serialized or encrypted for use on a specific system or group of systems at a nominal penalty in cost and time.

Departmental level systems for document storage or image storage will use the lower capacity higher performance read/write drives. Entry level departmental applications will use small library units with five to thirty-two media units to contain all the required records in a conveniently accessible form. Larger organizations will use libraries containing hundreds of disks. Entry level systems will be found in office automation, medical, law enforcement, CAD/CAM, and smaller financial applications, and their larger cousins will be found in corporate or divisional information centers of large financial institutions, government agencies, defense contractors and aerospace firms.

Erasable optical storage is expected to significantly displace tape storage devices, when available, as drive prices decline below \$500 and customer confidence in the new technology increases. However, the high end user price of the media (\$100 to \$200 compared to \$15 to \$20 for a tape reel or cartridge) will limit initial acceptance.

An erasable optical disk offering 30-60 megabytes of capacity at an end user media price approximating \$30 might be very competitive against tape cartridge media for archival storage: Most tape users consume only a

fraction of tape capacity, sometimes storing only one dataset per media unit. This practice may carry over as optical memory comes into use, but it is more likely that the random access capability of optical disks will encourage users to more completely use the media units. If this occurs, actual user media costs may not be higher than those for tape cartridge media.

Small erasable disk drives will find significant use as system disks in low end applications when average access times and data transfer rates of these small drives are competitive with those of rigid magnetic disk drives offering equivalent capacity. For some applications, removability is a very attractive feature: Even with modest access time, an optical disk coupled with a rigid magnetic disk drive could perform all required backup storage requirements, yet not require additional controllers or special software.

System users in the military and aerospace segments of the industry who are subject to strict security controls require the ability to store the media in a vault or other secure facility when not in use, even when the media is used on the primary system disk drive. However, optical drive prices will have to be competitive with removable media magnetic disk drives if optical drives are to displace magnetic drives in security oriented applications.

The price/performance characteristics of 5.25" and 8" optical drives are consistent with use on both micro and mini-based systems. Some of the larger capacity units may see service as peripherals on smaller mainframes as well as mini-computers if suitable controllers are developed.

Specific applications include:

Save-restore operations

- * Save-restore disk data backup.
- * Archival storage of files.

Reference level storage

- * Storage of programs, freeing up fixed magnetic disk drives for data.
- * Storage of data bases frequently used but infrequently changed.

Document storage

- * Storage of images for use in departmental or small organizational CAD/CAM, medical, law enforcement, and financial record systems.
- * Office automation systems at the departmental level.

Data distribution

* Production and distribution of updatable data bases in quantities too small to warrant mass replication costs or where replication delays are too long for timeliness.

System disk

* Function as system disk where moderate performance is adequate and high capacity is needed.

Technical trends

Major issues for the small drives include media technology, access times, media lifetime error rates, erasability, and software. Other significant issues are track following and servo control and substrate materials. Most of these are issue areas for larger drives as well, so this section also applies to larger drives, unless otherwise noted.

Write-once recording: A variety of optical recording technologies and media fabrication processes are in use, creating interchange problems and OEM confusion. At present, pit forming or bubble forming writing methods are in the majority, but writing using the

phase change between amorphous and crystalline states to vary reflectivity at a spot may become more common. IBM, Sony, Fujitsu and Matsushita are currently using phase change recording. Write-once dye based media is being used by Eastman Kodak, Pioneer and Ricoh. In general, these are not interchangeable, although more sophisticated drives capable of detecting media type could accomodate some degree of interchange.

Interchangeable media designs will eventually evolve. The creation of interchange standards will promote market acceptance and media producers will be able to produce media usable on a variety of drive designs. The surviving designs will be those with low manufacturing cost solutions.

Erasability: There are several technologies contending for acceptance in erasable optical media, but magneto-optical media appears to be the only near term practical product capable of meeting user demands for sensitivity, erasability, and stability. However, magneto-optical techniques may not be the long range solution. Progress has been made in erasable phase change and other types of erasable recording even though these technologies are behind magneto-optical in development. The high cost of manufacturing the required multi-layer structures and complex overwrite latency solutions makes magneto-optical a dubious long term choice as the preferred erasable media technology.

Provided that an adequate number of erase cycles can be demonstrated, it is likely that the second generation of erasable media will make use of phase change techniques. Phase change media may permit the interchange of write-once and erasable media on a single drive, something that is not inherent to magneto-optical recording. Samples of erasable phase change media may become available as early as 1988.

Dye based media may eventually become commercially significant for erasable optical disks. Now in R&D status, this type of media is less subject to degradation problems and uses inexpensive materials. While it requires more development to provide an adequate number of write/erase cycles for general use, 1,000 to 10,000 cycles is probably adequate for tape replacement applications. based media is likely to be solvent coatable and relatively inexpensive to produce, and may operate with existing drives (except those configured for magneto-optical media). Obtaining an adequate number of write/erase cycles is technically difficult, and dye based erasable media will not be commercially available until 1990 or later. Furthermore, multiple lasers may be required in drives using dye-based media, raising drive cost. However, dye based media's relative immunity to environmental influences enhances its desirability as a low cost candidate to address the erasability opportunity.

Media lifetime: While accelerated life tests seem to indicate that media lifetimes of 10 years or more are achievable, this aspect of

media performance will remain unproven until actually demonstrated, limiting the use of optical recording for archival records. Because organic recording layers such as dyes seem to have better corrosion resistance than the metal films typically used, dye based media may displace the original metal film types over time.

<u>Substrates</u>: Plastic is the currently preferred material, in order to reduce media cost and improve manufacturability. At present, Polycarbonate appears to be the future material of choice, displacing PMMA. PMMA is permeable to water vapor which, in turn, can cause corrosion of the active layer. Epoxy casting, which offers low optical distortion, is also being evaluated as a substrate fabrication technique.

While casting polycarbonate with low birefringence (a form of optical distortion) is difficult, proper formulation and control of the molding process has been shown by some substrate manufacturers to permit fabrication of substrates adequate for 5.25" media. The job of making polycarbonate 12" substrates is more difficult, but at least one Japanese manufacturer claims to have solved the problems and is now providing samples.

Glass may be used in some small drives. The material is free of birefringence effects that distort the optical path, is non-permeable to moisture, is flat, and distortion free. While mechanically strong, it has not been shown that small cracks or chips caused during drive assembly or cartridge assembly will not propogate when the disk is rotated at high speed, causing eventual disintegration of the disk. Most drive makers are now convinced that glass substrates are safe to use in small diameter drives. Sharp and Matsushita Communication Industrial have announced 5.25" erasable drives using glass substrate media. If successful, other manufacturers are likely to do the same. The flat glass surface, coupled with high purity materials, can produce media with inherent defect levels considerably better than average. This has the advantage of reducing overall latency in the drive due to the need to perform error correction during data reads.

Access times: One of the major limitations of optical drives is average access time (seek time plus latency), which exceeds 50 milliseconds on all products yet announced except for the Maxtor 'Tahiti' 5.25" erasable drive. Many other small optical drives still have average access times in excess of 100 milliseconds. The first magneto-optical drives will have an additional latency for writing operations caused by the need to erase each sector before writing. This lack of overwrite capability requires that an additional complete rotation be performed before the drive is ready to write in the selected sector. Several techniques have been proposed to eliminate the need for an erase pass, and it is likely that future generations of M-O drives will not require a separate erase pass. The overwrite solution will come at the expense of additional complexity in the drive, media or both, so there will be a trade-off of performance for cost.

Optical drives may have additional latency associated with write operations due to write verification delays. In both read and write operations, latency is increased if media defects have forced a file to be written in non-contiguous segments, as is frequently the situation.

The long access times of today's optical disk drives make them unattractive as competitors for magnetic disks in most system disk drive applications, but are less important when the optical drive is used in an automated library because the fetch times and drive spin-up times are long in comparison to the drive access time. Reduction of drive spin-up time is important when the drive is used in a library based system in order to minimize the length of the waiting-for-access queue. Spin-up times of 2 seconds or less are desirable.

Manufacturers of smaller drives are targeting access times of under 50 milliseconds for new products. Evolving optical head designs of lower mass and split optics, plus the relatively short head travel distances used on small diameter drives, offer the prospect of average access times in the 35 to 45 millisecond range in 1988.

Because most optical drives have both fine and coarse head positioning mechanisms, the average access time to data within the range of the fine head positioner may be very competitive with the average access times of small magnetic disk drives for similar amounts of data. For instance, an Optimem drive can access a band of tracks from the fine positioner's nominal center position. About 8.3 megabytes lie within this range, and any point in the range can be reached within 30 milliseconds, including latency. This suggests that suitable software could improve the throughput of optical drives, much as the use of cache improves the performance of magnetic disk drives.

Even when head positioning times improve, the amount of data quickly accessible from an optical disk drive will not match that quickly accessible on magnetic disks. Magnetic disks have multiple surfaces and make a cylinder of data available (with a short delay for head switching) from which data can be accessed. Optical drives, which today typically can access a single surface, must always move the head to reach additional tracks -- a more time consuming operation. As heads shrink in mass and cost, optical drives will appear that offer on-line access to both sides of the disk. Multi-disk designs also appear inevitable and may begin to appear in 1990 on small diameter drives as head mass and cost decline.

Other factors that degrade drive performance include the multiple passes required to perform write verify operations or pre-writing erasures for erasable drives. File fragmentation caused by the need to rewrite sectors due to media degradation also is a factor on write-once drives. Some drives, such as the Laserdrive 810 series, incorporate sophisticated firmware and buffering to keep

throughput high and offer a significant throughput advantage over less sophisticated designs.

Optical disk drives rotate at lower speeds than do typical magnetic disk drives, so optical drive latency worsens the performance of optical drives in comparison with magnetic drives. Improvements in media materials, laser power, and tracking and focusing servos should eventually enable optical disk latency to approach magnetic disk latency. The MCI JU-9400, rotating at 2400 RPM, was the first such improved drive to become available, and both the Sony and Maxtor 5.25" erasable drives operate at 2200 RPM or above. Erasable media requires slightly less write power than write-once media, an advantage which can be translated into higher rotation speeds for erasable drives.

Error rate: Error correcting codes are used to compensate for the high raw error rate of optical media. The codes used, typically long distance Reed-Solomon codes, are able to deal with the higher defect density that occurs at the end of media life. While there is a reduction of data capacity on the disk to accommodate the redundancy needed by ECC methods, the loss may be as little as 8%, depending upon the ECC technique used. Where media have a high defect density, the error correction process can add substantial latency to data retrieval times. Drives will begin to incorporate more sophisticated ECC circuitry capable of doing on-the-fly error correction in such a short time that ECC latency will not be observed.

Packaging: Optical disk drives using read/write 4.72" or 5.25" disks will be packaged to conform with the envelope of a full height 5.25" floppy disk drive, limiting use to external mounting with most personal computers. Half height designs are planned and may be generally available in 1989. Ricoh announced a half high model in 1988.

Military interest is spurring the design of ruggedized optical drives. At least 3 firms are actively engaged in pursuing this product area.

Track following: Most optical disk drive units make use of a pregrooved substrate surface to establish track location. The desire for minimal media cost and certain performance benefits has resulted in the development of drives capable of using grooveless media and a sector servo approach, even though the drive will be more expensive. Because the approaches are fundamentally incompatible, universal interchangeability will not be achieved.

Standards: There are not yet any final optical media or drive standards, but ANSI X3B11, ECMA TC31, ISO TC91/SC23 are all involved in standardization programs for unrecorded media. Standardization efforts are currently concentrated upon the 130 mm media size, and an ISO write-once draft standard was circulated in early 1988. Drafts of standards for 5.25" and 3.5" erasable media are cur-

rently in preparation. The physical cartridge will borrow much from the work done on the write-once standard, but the same conflicts on the track following servo that bedeviled the write-once standards have the potential to cause enough conflict to delay the appearance of erasable 5.25" drive standards for at least another year. Work on 3.5" standards is currently deadlocked in a dispute over media diameter and cartridge thickness that will take some time to resolve. As of mid-1988, the contest between the servo formats seemed to be favoring the sampled servo approach for 3.5" erasable drives, even though 5.25" drive producers largely favor the continuous format. The early producers of erasable drives have an opportunity to set a de facto standard if they can show interchange of media and develop a market lead.

No standard device level interface for optical drives exists, but there is a grass roots effort to prepare an optical drive version of the ESDI standard. At the system level, SCSI appears to have the status of a de facto standard, and the IBM PC/AT interface will have this status for both CD-ROM and read/write small drives.

<u>Software</u>: Read/write optical disk drives require specific supporting software, including drivers, operating system utilities, and application programs.

Basic software must address problems presented by the nature of the optical disk drive:

- * More storage capacity is available than unmodified small computer operating systems can handle.
- * Write-once disks require nonstandard file management utilities and drivers. File updates may result in degraded performance if files and directories are dispersed across the disk.
- * Magneto-optical disks require modified system software to handle the overwrite requirement, or must have this function performed by the disk electronics or controller.
- * File management functions in the computer operating system must be modified so that the optical disk appears to the operating system to be identical to a magnetic disk drive.

Driver and operating system utilities specific to optical disk drives will be provided by drive vendors for widely used systems such as the IBM PC. Some drive producers, such as Maximum Storage and Laserdrive, are making major efforts to differentiate their products based on software content. System integrators and OEMs will provide system support on less widely used processors.

Application programs frequently will be supplied in the form of object code that is resident on the optical disk itself. The large capacity of the optical disk may permit the inclusion of program versions for several types of popular machines.

Software suppliers will probably have to face the choice of distributing source code to system integrators and OEMs, or remastering (for CD-ROM), or maintaining a significant ongoing effort to provide support for a complete range of systems. Many will choose to let other organizations bear support costs.

All of the above represent development that requires time, making software one of the factors that have delayed high volume shipments of optical drives.

Forecasting assumptions

- 1. IBM will announce an internally manufactured erasable 5.25" drive, with shipments starting in 1990. IBM write-once drive shipments beginning in late 1987 will decline through 1989, then cease as IBM's erasable drives start to become available.
- 2. Erasable media will be available in production quantities in 1988. High volume production will begin in mid-1989. Erasable drive shipments will have competition from high capacity floppy disk drives targeted at the tape replacement market, especially in 1991 as low cost drives using limited erasability media enter the market.
- 3. Japanese 5.25" write-once drives will be generally available on an OEM basis in 1988, as the standards become clear enough to encourage committment to production.
- 4. Write-once media interchange specifications will be standardized in 1988 to the extent that the multiple servo format dispute allows it. Erasable media specifications will be largely standardized by late 1989.
- 5. The small system add-on market will be the earliest large major distribution opportunity for drives in this group. OEM acceptance of erasable drives will occur at a faster rate than for write-once drives.
- 6. 4.72" write-once drives will be in production by late 1989, but the number of producers will be limited at first. Shipments will also be impacted in 1990 and after by erasable optical drive shipments.
- 7. There will be no flexible substrate optical disk drive in production prior to 1991.

TABLE 13

READ/WRITE OPTICAL DISK DRIVES, LESS THAN 1 GIGABYTE

REVENUE SUMMARY

			DISK DRIVE REVENUES, BY SHIPMENT DESTINATION (\$M)									
	Reve		19	988	19	89	19	90	1	991		
	U.S.	WW 	U.S.	WW	U.S.	WW 	U.S.	WW	U.S.	WW		
U.S. Manufacturers												
IBM Captive	3.5	4.3	2.2	2.5	11.7	15.2	54.0	72.0	180.0	240.0		
Other U.S. Captive												
TOTAL U.S. CAPTIVE	3.5	4.3	2.2	2.5	11.7	15.2	54.0	72.0	180.0	240.0		
OEM	6.3	10.9	18.0	24.2	58.8	78.3	141.2	178.4	256.4	324.3		
TOTAL U.S. NON-CAPTIVE	6.3	10.9	18.0	24.2	58.8	78.3	141.2	178.4	256.4	324.3		
TOTAL U.S. REVENUES	9.8	15.2	20.2	26.7	70.5	93.5	195.2	250.4	436.4	564.3		
Non-U.S. Manufacturers												
Captive	1.2	16.6	5.0	47.2	6.9	66.5	13.3	115.9	40.0	210.0		
OEM	8.7	14.9	25.4	52.9	70.6	115.1	136.0	191.3	225.5	326.7		
TOTAL NON-U.S. REVENUES	9.9	31.5	30.4	100.1	77.5	181.6	149.3	307.2	265.5	536.7		
Worldwide Recap												
TOTAL WORLDWIDE REVENUES	19.7	46.7	50.6	126.8	148.0	275.1	344.5	557.6	701.9	1,101.0		
OEM Average Price (\$000)	1.5	1.9	2.0	2.1	1.5	1.5	1.2	1.2	.9	.9		

TABLE 14

READ/WRITE OPTICAL DISK DRIVES, LESS THAN 1 GIGABYTE

UNIT SHIPMENT SUMMARY

		1987Forecast									
	198 Shipme		19	 88	19	Fored 189	ast19:	90	1	991	
	U.S.	WW	U.S.	WW	U.S.	WW	U.S.	WW	U.S.	WW	
U.S. Manufacturers											
IBM Captive	1.3	1.6	.8	.9	4.0	5.2	18.0	24.0	60.0	80.0	
Other U.S. Captive											
TOTAL U.S. CAPTIVE	1.3	1.6	.8	.9	4.0	5.2	18.0	24.0	60.0	80.0	
OEM	3.2	5.7	8.4	12.1	40.0	53.0	116.0	146.0	250.0	315.0	
TOTAL U.S. NON-CAPTIVE	3.2	5.7	8.4	12.1	40.0	53.0	116.0	146.0	250.0	315.0	
TOTAL U.S. SHIPMENTS	4.5	7.3	9.2	13.0	44.0	58.2	134.0	170.0	310.0	395.0	
Non-U.S. Manufacturers											
Captive	.2	2.3	1.1	8.6	1.5	13.9	3.1	25.1	15.5	63.0	
OEM	6.5	7.8	12.8	23.0	44.0	70.1	108.0	148.0	250.0	355.0	
TOTAL NON-U.S. SHIPMENTS	6.7	10.1	13.9	31.6	45.5	84.0	111.1	173.1	265.5	418.0	
Worldwide Recap											
TOTAL WORLDWIDE SHIPMENTS	11.2	17.4	23.1	44.6	89.5	142.2	245.1	343.1	575.5	813.0	
Cumulative Shipments											
IBM Non-IBM WORLDWIDE TOTAL	1.3 12.8 14.1	1.6 21.5 23.1	2.1 35.1 37.2	2.5 65.2 67.7	6.1 120.6 126.7	7.7 202.2 209.9	24.1 347.7 371.8	31.7 521.3 553.0	84.1 863.2 947.3	111.7 1,254.3 1,366.0	

TABLE 15 READ/WRITE OPTICAL DISK DRIVES, LESS THAN 1 GIGABYTE WORLDWIDE REVENUES (\$M)

BREAKDOWN BY DISK DIAMETER

	19							orecast								
	Reve 8"	nues 5.25"	198 8"	5.25"	8"	198 5.25"	9 4.72"	3.5"	8"	19! 5.25"	4.72"	3.5"	8"	5.25"	4.72"	3.5"
- -																
U.S. MANUFACTURERS																
IBM Captive		4.3		2.5		15.2				72.0				240.0		· -
OEM		10.9		24.2		63.9		14.4		140.4		38.0		265.1		59.2
TOTAL U.S. REVENUES	,	15.2		26.7		79.1	·	14.4		212.4		38.0		505.1		59.2
NON-U.S. MANUFACTURERS																
Captive	7.7	8.9	6.8	40.4	4.1	62.1		.3	13.6	99.3		3.0	18.0	138.0		54.0
OEM	2.0	12.9	1.0	51.9	. 5	96.6	8.4	9.6		134.9	16.8	39.6		174.2	79.0	73.5
TOTAL NON-U.S. REVENUES	9.7	21.8	7.8	92.3	4.6	158.7	8.4	9.9	13.6	234.2	16.8	42.6	18.0	312.2	79.0	127.5
WORLDWIDE RECAP			-													
Captive	7.7 -19.8%	13.2	6.8 -11.7%	42.9 +225.0%	4.1 -39.7%	77.3 +80.2%		.3	13.6 +231.7%	171.3 +121.6%		3.0 +900.0%	18.0 +32.4%	378.0 +120.7%	·	54.0
OEM	2.0 -25.9%	23.8 +167.4%	1.0 -50.0%	76.1 +219.7%	.5 -50.0%	160.5 +110.9%	8.4	24.0		275.3 +71.5%	16.8 +100.0%	77.6 +223.3%	 	439.3 +59.6%	79.0 +370.2%	132.7 +71.09
Total Revenues	9.7 -21.1%	37.0 +315.7%	7.8 -19.6%	119.0 +221.6%	4.6 -41.0%	237.8 +99.8%	8.4	24.3	13.6 +195.7%	446.6 +87.8%	16.8 +100.0%	80.6 +231.7%	18.0 +32.4%	817.3 +83.0%	79.0 +370.2%	186.7 +131.6%
ANNUAL SHARE, BY DIAMETER	20.8%	79.2%	6.2%	93.8%	1.7%	86.5%	3.1%	8.7%	2.4%	80.2%	3.0%	14.4%	1.6%	74.3%	7.2%	16.9

TABLE 16

READ/WRITE OPTICAL DISK DRIVES, LESS THAN 1 GIGABYTE

WORLDWIDE SHIPMENTS (000)

BREAKDOWN BY DISK DIAMETER

	19		19			198				19				19		
	8"	ments 5.25"	8"	5.25"	8"	5.25"	4.72"	3.5"	8"	5.25"	4.72"	3.5"	8"	5.25"	4.72"	3.5"
·																
U.S. MANUFACTURERS																
IBM Captive		1.6		.9		5.2				24.0				80.0		
OEM		5.7		12.1		41.0		12.0		108.0		38.0		241.0		74.0
TOTAL U.S. SHIPMENTS		7.3		13.0		46.2		12.0		132.0		38.0		321.0		74.0
NON-U.S. MANUFACTURERS																
Captive	.7	1.6	.5	8.1	.3	13.5		,.1	1.0	23.1		1.0	1.5	34.5		27.0
OEM	.4	7.4	.2	22.8	.1	56.0	6.0	8.0		92.0	12.0	44.0		142.0	108.0	105.0
TOTAL NON-U.S. SHIPMENTS	1.1	9.0	.7	30.9	.4	69.5	6.0	8.1	1.0	115.1	12.0	45.0	1.5	176.5	108.0	132.0
WORLDWIDE RECAP																
Captive	.7 +75.0%	3.2	.5 -28.6%	9.0 +181.3%	.3 -40.0%	18.7 +107.8%		.1	1.0 +233.3%	47.1 +151.9%		1.0 +900.0%	1.5 +50.0%	114.5 +143.1%		27.0
OEM	.4	13.1 +274.3%	.2 -50.0%	34.9 +166.4%	.1 -50.0%	97.0 +177.9%	6.0	20.0		200.0 +106.2%	12.0 +100.0%	82.0 +310.0%	 	383.0 +91.5%	108.0 +800.0%	179.0 +118.3%
Total Shipments	1.1 +37.5%	16.3 +365.7%	.7 -36.4%	43.9 +169.3%	.4 -42.9%	115.7 +163.6%	6.0	20.1	1.0 +150.0%	247.1 +113.6%	12.0 +100.0%	83.0 +312.9%	1.5 +50.0%	497.5 +101.3%	108.0 +800.0%	206.0 +148.2%
ANNUAL SHARE, BY DIAMETER	6.3%	93.7%	1.6%	98.4%	.3%	81.5%	4.2%	14.0%	.3%	72.1%	3.5%	24.1%	.2%	61.3%	13.3%	25.2%

TABLE 17

READ/WRITE OPTICAL DISK DRIVES, LESS THAN 1 GIGABYTE

WORLDWIDE SHIPMENTS (000)

ERASABLE/WRITE ONCE DRIVE ANALYSIS

		987					-Forecast				
	Shipr Units	nents %	19 Units	988 %	19 Units	89 %	1 Units	990 %	19 Units	991	
U.S. MANUFACTURERS								,			
Captive Total	1.6		.9		5.2		24.0		80.0		
Write-Once	1.6	100.0	.9	100.0	1.2	23.1					
Erasable					4.0	76.9	24.0	100.0	80.0	100.0	
OEM Total	5.7		12.1		53.0		146.0		315.0		
Write-Once	5.7	100.0	11.5	95.1	17.0	32.1	34.0	23.3	41.0	13.0	
Erasable			.6	4.9	36.0	67.9	112.0	76.7	274.0	87.0	
Total U.S.	7.3		13.0		58.2		170.0		395.0		
Write-Once	7.3	100.0	12.4	95.5	18.2	31.3	34.0	20.0	41.0	10.4	
Erasable			.6	4.5	40.0	68.7	136.0	80.0	354.0	89.6	
NON-U.S. MANUFACTURERS											
Captive Total	2.3		8.6		13.9		25.1		63.0		
Write-Once	2.3	100.0	8.6	100.0	13.8	99.4	24.1	96.1	36.0	57.2	
Erasable					.1	.6	1.0	3.9	27.0	42.8	
OEM Total	7.8		23.0		70.1		148.0		355.0		
Write-Once	7.8	100.0	18.3	79.7	41.1	58.7	63.0	42.6	84.0	23.7	
Erasable			4.7	20.3	29.0	41.3	85.0	57.4	271.0	76.3	
Total Non-U.S.	10.1		31.6		84.0		173.1		418.0		
Write-Once	10.1	100.0	26.9	85.2	54.9	65.5	87.1	50.4	120.0	28.7	
Erasable			4.7	14.8	29.1	34.5	86.0	49.6	298.0	71.3	
WORLDWIDE RECAP											
Total Worldwide Shipments	17.4 +304.6%		44.6 +156.3%		142.2 +218.8%		343.1 +141.2%		813.0 +136.9%		
Write-Once	17.4 +304.6%	100.0	39.3 +125.8%	88.2	73.1 +86.0%	51.5	121.1 +65.6%	35.3	161.0 +32.9%	19.8	
Erasable			5.3 	11.8	69.1	48.5	222.0 +221.2%	64.7	652.0 +193.6%	80.2	

Note: Percentage figures with plus/minus signs refer to year-to-year growth rates.

TABLE 18

READ/WRITE OPTICAL DISK DRIVES, LESS THAN 1 GIGABYTE

APPLICATIONS SUMMARY Percentage of Worldwide Shipments

	1987 Es	timate	1991 Projection			
APPLICATION	Units (000)	%	Units (000)	%		
MAINFRAME/SUPERMINI General purpose			32.5	4.0		
MINICOMPUTERS AND MULTI-USER MICROS Business and professional, including networks	.2	1.4	113.8	14.0		
PERSONAL COMPUTERS						
Business and professional, single user	9.7	55.8	211.3	26.0		
OFFICE SYSTEMS AND WORKSTATIONS Dedicated application	1.4	7.8	203.3	25.0		
NON-OFFICE SYSTEMS AND WORKSTATIONS Technical, distribution, medical, other specialized	6.1	35.0	187.0	23.0		
CONSUMER AND HOBBY COMPUTERS			24.4	3.0		
OTHER APPLICATIONS			40.7	5.0		
Total	17.4	100.0	813.0	100.0		

READ/WRITE OPTICAL DISK DRIVES, MORE THAN 1 GIGABYTE

Coverage

Examples of disk drives in this group include:

14" disk diameter

Eastman Kodak

6800

12" disk diameter

Toshiba

Art Tech Gigadisc
Eastman Kodak
Fujitsu
Hitachi
Laser Magnetic Storage
NEC
Nikon
Optimem
Sanyo
Sony

GD1001, GD1002 6800 F6441B1, M2502A/B OD 301A-1 Laserdrive 1200E, 1250E N7911/N6329-21, N6513 MO-DD120C (Erasable) 2400 SOF-8501 WDD 3000

DF-0450, DF-0460, WM-S500

High capacity optical disk drives are read/write drives, either write-once or erasable. At present, only write-once drives are available in this capacity range, although Nikon has announced a 12" erasable drive for future delivery. The drives are likely to be used with large mini-computers and mainframes in specialized imaging, document storage, or archiving applications. They are frequently used with library devices to make random access mass storage subsystems capable of handling hundreds of gigabytes of storage on-line. At present, all but one of the available drives in this group use 12" media, and all access a single side of a single disk.

8" or 5.25" media may eventually appear in a high capacity drive, but such drives will probably use multiple disks per drive or be capable of accessing both sides of the disk simultaneously.

Market status

In 1987, 7,900 drives were shipped worldwide, a decline of 7.1% due largely to a 30.3% decline in captive unit shipments. 1987 OEM drive shipments increased modestly by 7.8%. 1987 revenues were \$83.9 million, of which 55% were derived from OEM sales. As in 1986, a majority (over 82%) of units shipped were produced by non-U.S. firms. The shipment leaders in 1987 were Laser Magnetic Storage, Optimem, and Hitachi.

Japan originally led this drive group because of the drives' suitability for use in systems capable of storing documents produced in Asian character sets. However, non-Japanese producers are narrowing the lead of Japanese producers, as optical storage units begin to work their way into on-line retrieval applications in large U.S. and European organizations.

Government and financial organizations have continued to show intense interest in optical disk drives in this group over the last year, and some system integrators, including IBM, are beginning to quote on orders of significant magnitude as prospective customers leave the technology evaluation stage and begin making hard decisions about configurations and suppliers. The endorsement of optical technology by Eastman Kodak and other firms supplying microfilm equipment for records management has also helped to expand the available market, as has the availability of library units from several suppliers. In mid-1988, IBM announced the availability of a 12" optical drive and library for System/36 and AS/400 users, a move also likely to encourage the use of large optical drives. IBM obtains the drive from LMS and the library from Filenet.

<u>Marketing trends</u>

High capacity optical disk drives will be used primarily on larger systems and in more specialized applications, so shipment growth rates for drives with more than 1 gigabyte capacity will be smaller than for other optical disk drive groups. Worldwide unit shipments are forecasted to increase from 7,900 units in 1987 to 25,600 units in 1991. Revenues are expected to grow to \$171.9 million, 11.5% of the worldwide optical disk drive market. Nearly two thirds of the market is in the U.S. Growth within the forecast period will be slowed by competition from smaller optical disks and the long lead time on software development for use with optical drives in large systems.

Applications will continue to be concentrated in image processing and archiving, where the higher price and lower performance of current products is acceptable. Despite evidence of intense interest, demand from the record management market is expected to build slowly, with the highest shipments into this segment anticipated after 1990, for reasons discussed in the following section.

Eastman Kodak has been in limited production of a 14" write-once disk drive since 1987. This unit is available to OEMs and will probably be used by Eastman Kodak in its own line of image processing systems on a captive basis in the future. The firm is offering a variety of systems to the records management market using its own and other optical drives. Its product offerings at the AIIM conferences in 1987 and 1988 received a favorable reaction, but the greatest short term interest was concentrated in the smaller systems.

While IBM has an optical disk drive development program underway, no production is anticipated prior to 1990. It is unlikely that IBM will

find write-once technology attractive for an internally manufactured drive, given the relatively short time until erasable drives are available. The most probable IBM optical drive is a small diameter multidisk configuration using magneto-optical erasable media, using a library mechanism with capacity per disk less than 1 gigabyte. But IBM usually has multiple development programs, and an 8" or 12" erasable drive is not out of the question despite the technical difficulties involved. An IBM introduction of a large capacity drive, if it occurs within the forecast span of this report, would probably boost shipments of large capacity drives above the projections. IBM is also believed to be developing a library system, but it is not likely to be shipped before 1991.

IBM's interim policy is to act as a system integrator, purchasing appropriate drives and library units and offering them as a package or as a specially quoted subsystem. Integration software is provided by IBM.

DEC has taken similar action, offering the LMS 12" drives as the DEC model RV-20, and Unisys has been purchasing 12" drives from Hitachi to run on its 1100 mainframe.

Third parties, including Data/Ware Development and Comparex, are starting to offer optical drive subsystems for attachment to IBM mainframes, and it is likely that other firms will also offer such attachments.

Applications

Image storage, rather than data storage, continues to characterize most of the applications for larger capacity optical disk drives. The over 1 gigabyte group will be used mostly for records management, medical, geophysical, military or industrial imaging, plus more limited archival

storage with mainframes, and to accumulate transaction documents that must be stored for future reference.

Several financial institutions have been experimenting with optical drives for transaction storage applications. These programs are now being expanded. The high capacity drive will also have a major role in acquiring high volume digitized data from real time inputs and storing it for subsequent analysis. Such applications can be found in industrial, earth resources and defense applications.

Typical usage will include:

Engineering and manufacturing systems

- * Centralized drawing/document storage and distribution.
- * Document storage for computer integrated manufacturing.
- * Document storage and dissemination for construction projects.

Records management

- * Personnel records.
- * Tax records and tax rolls.
- * X-ray and scanner images.
- * Law enforcement records
- * Social Security, patent and other government records.
- * Large library index files.

Save/restore operations

- * Disk backup.
- * Archival storage.

Office automation

- * Storage and dissemination of office documents.
- * Storage of legal documents incorporating signatures and other personal identification.

Transaction audit trails

- * Records of reservations, bank transactions, etc.
- * Secure area access records.
- * Insurance claim and policy records

Data acquisition

- * Capture of data from scanners, seismic detectors or other imaging devices.
- * Capture of data having military or intelligence significance.

The early users of high capacity drives have concentrated on the storage of images, including document filing systems used within government bodies such as taxing agencies, law enforcement, and military/intelligence agencies. Drive library units (jukeboxes) are available for use with high capacity optical disk drives, allowing the creation of online mass storage subsystems that are attracting the attention of insurance companies, banks, and other large organizations that must have ready recall of large amounts of account related data. Approximately 15% of the drives in this group are shipped into automated library subsystems, and this percentage is increasing at a rate of 4% annually, so that in 1991, 27 to 30% of the units in this group will be installed in jukeboxes upon shipment. An automated library system using large capacity drives will often have 2 or 3 drives to improve overall response time.

In 1987, the largest application areas for high capacity optical drives were almost equally split between smaller multi-user systems, office workstations and non-office workstations. By 1991, small drives will have capped off the penetration of larger drives in most applications, but the larger drives will continue to find uses in specialized

office document filing systems, with non-office workstations and with multi-user processors in the mini and mainframe applications. Workstations will remain the most frequent application.

The records management market will eventually be a major consumer of high capacity optical disk drives, but this market is likely to experience slow growth due to the conservative nature of the market. Records managers will be reluctant to abandon large investments in existing systems without ample experimentation to convince them that there are no hidden perils in the new technology. In some organizations, infighting between MIS managers and records managers will further delay purchase decisions.

Finally, prospective buyers continue to contend with difficulties in obtaining adequate equipment to convert existing film records into a form suitable for optical disk storage, and delays in development of application software. There will be competition from smaller capacity drives in many system applications; for many companies, it will seem wiser to experiment with a small scale system before making major commitments.

Mainframes and minicomputers will become hosts for large optical drives, as they have the capability needed to process or distribute the large amounts of data stored. Tape and microfilm systems currently used in mainframe environments will be partially displaced by the large capacity optical drives now becoming available.

Microcomputers will be the typical hosts for large capacity optical drives used for document storage in office automation systems and for most medical systems. Microcomputers with large capacity optical disk drives will also be used for systems that store and manipulate engineering drawings, technical specifications and reference materials. These smaller systems will need to be equipped with smaller library units to meet de-

partmental needs, but most library producers have concentrated on larger capacity subsystems. If the smaller units, with disk storage capacity of 5-10 units are not produced, this segment of the market will eventually be captured by smaller diameter drives used with library units of 10-20 disk capacity.

Technical trends

Many of the technical issues discussed in the section on optical disk drives under 1 gigabyte capacity also apply to the larger capacity drives in this section. The issues are reviewed here as they pertain specifically to the higher capacity drives.

Almost all of the released products in this group currently use complex optical head assemblies, resulting in excessive head positioning times. This is of less consequence when the drive is used in a library subsystem, because of the long time required to locate, mount, and spin up the disk to operating speed. Considerable work is being done by manufacturers to reduce drive complexity and to improve access time. Even so, it may be several years before typical head positioning times are below 100 milliseconds for these drives. While average access time may be less important in automatic library based systems, access times must be dramatically improved if large optical drives are ever to acquire a more general role in data processing systems.

Most of the drives in the more than 1 gigabyte group are in the 12" media diameter class, but 14" diameter media is also represented. The Eastman Kodak program was mentioned earlier; if Eastman Kodak is successful, other firms will be encouraged to offer similar products.

Standards for very high capacity media will take several years to materialize, because the initial product designs are already established, even though incompatible. The ANSI X3B11 committee, which has the U.S. charter to develop such a standard, has begun deliberations, but does not expect to have a standard for 12" or 14" media for some years to come. IBM could change this situation by making a product announcement of a high capacity internally mnufactured optical drive and creating a de facto standard, but as already noted, an early IBM announcement of a large capacity drive is unlikely, nor is it clear that any such product would be a large diameter design.

Large drives frequently will be part of disk library subsystems that permit the contents of many optical disks to be available under system control. These subsystems are intended to perform the functions of a mass storage subsystem with from 10 to over 200 disks available to a single drive in a library. Average retrieval and spinup times will be approximately 1/10 to 1/3 minute. Some libraries will be equipped with multiple drives and automated pickers that can operate independently of each other, minimizing access time.

Other technical issues affecting larger capacity drives are discussed below:

* System design: Most large capacity optical disk storage systems will incorporate an automated library. Several firms, including Cygnet, Filenet, Laser Magnetic Storage, Hitachi and others have designed libraries, discovering in the process that it is a major project, requiring substantial time and investment. To be a generally applicable product, the library may have to accommodate several brands of disk drive, an awkward consideration given the lack of product standardization in the industry. The library unit also has to be interfaced to the computer system with which it is to be used, requiring significant development time.

- * Software: The software required to integrate a write-once optical disk into the operating system environment of a mainframe computer represents a major project, requiring many man years of effort. The integration of erasable disks should be easier, but even these will present some problems. Those aspects of the drive unique to optical storage may be masked by the controller, so that the optical storage subsystem appears as a standard magnetic disk to the operating system.
- * Packaging: The larger capacity optical disk drives will typically have a rack mount configuration. Because these drives will often be used with library devices, there will be interest in defining a standardized mechanical interface that will permit any drive to be used with any library load/unload mechanism.

For the next few years, the 12" form factor will remain the most frequently encountered form factor in this product group. Eventually, multi-disk configurations fabricated with smaller diameter disks will appear in this product group. Both 5.25" and 8" diameters are likely to be represented in these multi-disk configurations. Single disk 14" diameter drives are becoming available as Eastman Kodak's drive goes into production.

- * Track following: Pregrooving of the media continues to be the primary method of providing tracking information to the tracking servo for this product group. There has been some interest in using sector servo techniques to improve tracking. Art Tech Gigadisc has done substantial development work with this technique and has incorporated it into the design of the ATG 12" drive. ATG believes that its technique improves the ability of the drive to accept write-once, erasable, and read-only media on the same drive and makes the drive less sensitive to variations in groove shape and depth. This approach has been proposed by ATG in the preparation of a standard for 12" optical media. Laser Magnetic Storage also favors a sector servo approach for its future products.
- * Interface: SCSI is the most commonly encountered interface on the large capacity optical drives. This is likely to remain the case unless IBM introduces optical drive products with a different interface. Even then, SCSI is likely to remain the preferred choice because of design commitments or until drives with higher performance are technically possible. It is not clear that there will be a standard or semi-standard device level interface for this product class. For most drives, proprietary interfaces are used at the device level at the present time.

For a 12" drive operating at 1800 RPM, a practical data transfer rate limit is about 10 megabits/second, limited by the spot size and power of the laser. As lasers improve, and as RPM increases, the interface will have to cope with significantly higher data transfer rates. A future 12" drive equipped with a green semiconductor laser and spinning at 3600 rpm could generate a data transfer rate exceeding 37 megabits/second.

- * Lasers: The larger form factors of the high capacity optical drive favor the use of larger head assemblies carrying multiple lasers. The use of multiple lasers can improve drive performance by permitting direct read during write, higher bit densities, use of unusual active layer material, and possibly other benefits. If head designs that separate the laser from the head optics are adopted to reduce head mass, it may also be possible to use non-semiconductor lasers and still achieve reasonable performance. Because non-semiconductor lasers can operate at higher frequencies and powers, very high performance may be possible by using them in optical storage systems. RCA, for instance, has produced a few specialized systems for the U.S. government using non-semiconductor lasers. However, cost and reliability will have to be traded for performance in such designs.
- * Media: Larger diameter media requires substrates that will not deform at high rotation rates and will maintain consistent optical properties over the usable area of the disk. The latter point is especially significant for magneto-optical media in which distortion caused by locked-in or dynamic stresses in the substrate creates signal degradation. These mechanical problems may be a significant obstacle to improving the performance of high end optical drives, although one Japanese supplier claims to have a substrate suitable for 12" erasable media available in limited quantities.

The current limit on rotational velocity for larger diameter disks is created by available laser write power and the performance of focus and tracking servos, rather than by material failure. 1800 RPM is considered today's state of the art; there are expectations of achieving 2800 to 3600 RPM in the future through the use of non-mechanical focusing techniques and improved substrate materials.

In general, erasable media for large capacity disks is not available except in sample quantities, and, given the current emphasis on small diameter media by media suppliers and standards groups, the availability date of production volumes is probably later than 1990. There are also significant technical problems to be overcome in the fabrication of large diameter erasable media.

Substrates: Both plastic and glass are in use for 12" media substrates, and Eastman Kodak is using an aluminum substrate for its 14" drive. Because of the difficulty in molding large diameter plastic substrates with adequately low birefringence, it seems likely that glass will play an increasingly prominent role in attempts to fabricate readily producible erasable media for large diameter drives. Producers of glass substrates have demonstrated that glass hardened by ion bombardment has adequate mechanical strength to withstand routine use under projected conditions for future drive designs. However, there is still uncertainty as to the effects of small imperfections such as nicks, scratches or chips caused during handling of the disk.

More work must be done by drive, media, and substrate producers to determine whether such imperfections represent a longer term hazard.

The aluminum substrates being used by Eastman Kodak may be usable for erasable media if erasable dye based media is successfully developed, but the pace of development has been slow and it is unlikely that any practical erasable dye based media will be available within the forecast period of this report.

Forecasting assumptions

- 1. No IBM-produced units in this category will be shipped until after 1991.
- 2. Technical difficulties will delay availability of larger diameter erasable media for this product group until after 1990.
- 3. There will be an adequate supply of write-once media for most products in this group.
- 4. Generally recognized media interchange standards for this product group will not exist until after 1989.
- 5. Products in this class will be used primarily with mainframes, large minicomputers, and image storage systems.
- 6. System support software for write-once products will be developed by system manufacturers. Most software projects will be time consuming, delaying the widespread appearance of optical memory on mainframes.
- 7. There will be no shipments of 5.25" or 8" drives in this product group within the forecast period.

TABLE 19

READ/WRITE OPTICAL DISK DRIVES, MORE THAN 1 GIGABYTE

REVENUE SUMMARY

	1987		DISK DRIVE REVENUES, BY SHIPMENT DESTINATION (\$M)Forecast									
	198 Rever		19	188	19	Forec	ast 19	90	19	91		
	U.S.	WW	U.S.	WW	U.S.	WW	U.S.	WW	U.S.	WW		
U.S. Manufacturers												
IBM Captive												
Other U.S. Captive	3.0	3.0	3.0	3.0	3.5	3.5	3.0	6.0	6.0	9.0		
TOTAL U.S. CAPTIVE	3.0	3.0	3.0	3.0	3.5	3.5	3.0	6.0	6.0	9.0		
OEM	7.1	10.3	11.1	14.4	14.0	18.8	18.8	26.7	26.4	38.8		
TOTAL U.S. NON-CAPTIVE	7.1	10.3	11.1	14.4	14.0	18.8	18.8	26.7	26.4	38.8		
TOTAL U.S. REVENUES	10.1	13.3	14.1	17.4	17.5	22.3	21.8	32.7	32.4	47.8		
Non-U.S. Manufacturers												
Captive	13.7	35.0	14.0	36.8	11.0	35.2	6.0	32.0	3.6	30.6		
OEM	26.1	35.6	47.5	63.1	56.0	72.8	60.0	79.2	71.5	93.5		
TOTAL NON-U.S. REVENUES	39.8	70.6	61.5	99.9	67.0	108.0	66.0	111.2	75.1	124.1		
Worldwide Recap												
TOTAL WORLDWIDE REVENUES	49.9	83.9	75.6	117.3	84.5	130.3	87.8	143.9	107.5	171.9		
OEM Average Price (\$000)	8.3	8.3	8.1	8.1	7.2	7.2	6.4	6.4	6.0	6.0		

TABLE 20

READ/WRITE OPTICAL DISK DRIVES, MORE THAN 1 GIGABYTE

UNIT SHIPMENT SUMMARY

		DISK DRIVE UNIT SHIPMENTS, BY SHIPMENT DESTINATION (000)									
	Shipm		198	88	198	 89	19	90	19	91	
	U.S.	WW.	U.S.	 WW	U.S.	 WW	U.S.	WW	U.S.		
U.S. Manufacturers											
IBM Captive											
Other U.S. Captive	.1	.1	.1	.1	.1	.1	.1	.2	.2	.3	
TOTAL U.S. CAPTIVE	.1	.1	.1	.1	.1	.1	.1,	.2	.2	.3	
OEM	.9	1.3	1.2	1.6	1.6	2.2	2.2	3.1	3.3	4.9	
TOTAL U.S. NON-CAPTIVE	.9	1.3	1.2	1.6	1.6	2.2	2.2	3.1	3.3	4.9	
TOTAL U.S. SHIPMENTS	1.0	1.4	1.3	1.7	1.7	2.3	2.3	3.3	3.5	5.2	
Non-U.S. Manufacturers											
Captive	.6	2.3	.8	2.7	1.0	3.2	.6	3.2	.4	3.4	
OEM	3.1	4.2	6.0	7.9	8.0	10.4	10.0	13.2	13.0	17.0	
TOTAL NON-U.S. SHIPMENTS	3.7	6.5	6.8	10.6	9.0	13.6	10.6	16.4	13.4	20.4	
Worldwide Recap											
TOTAL WORLDWIDE SHIPMENTS	4.7	7.9	8.1	12.3	10.7	15.9	12.9	19.7	16.9	25.6	
Cumulative Shipments											
IBM Non-IBM WORLDWIDE TOTAL	11.0 11.0	24.0 24.0	19.1 19.1	36.3 36.3	29.8 29.8	52.2 52.2	42.7 42.7	71.9 71.9	59.6 59.6	97.5 97.5	

TABLE 21

READ/WRITE OPTICAL DISK DRIVES, MORE THAN 1 GIGABYTE

WORLDWIDE REVENUES (\$M)

BREAKDOWN BY DISK DIAMETER

	198 Reven			 38		Forecast		 90	199	
= :	14"	12"	14"	12"	14"	12"	14"	12"	14"	12"
- -										
U.S. MANUFACTURERS										
Other U.S. Captive	3.0	,	3.0	,	3.5		6.0		9.0	
OEM		10.3	2.0	12.4	2.0	16.8	5.4	21.3	6.4	32.4
TOTAL U.S. REVENUES	3.0	10.3	5.0	12.4	5.5	16.8	11.4	21.3	15.4	32.4
NON-U.S. MANUFACTURERS										
Captive		35.0		36.8		35.2		32.0		30.6
0EM		35.6		63.1		72.8		79.2		93.5
TOTAL NON-U.S. REVENUES		70.6		99.9		108.0		111.2		124.1
WORLDWIDE RECAP										
Captive	3.0	35.0 -72.1%	3.0	36.8 +5.1%	3.5 +16.7%	35.2 -4.3%	6.0 +71.4%	32.0 -9.1%	9.0 +50.0%	30.6 -4.4
ОЕМ	 	45.9 +7.7%	2.0	75.5 +64.5%	2.0	89.6 +18.7%	5.4 +170.0%	100.5 +12.2%	6.4 +18.5%	125.9 +25.3%
Total Revenues	3.0	80.9 -51.8%	5.0 +66.7%	112.3 +38.8%	5.5 +10.0%	124.8 +11.1%	11.4 +107.3%	132.5 +6.2%	15.4 +35.1%	156.5 +18.18
ANNUAL SHARE, BY DIAMETER	3.6%	96.4%	4.3%	95.7%	4.2%	95.8%	7.9%	92.1%	9.0%	91.0%

TABLE 22

READ/WRITE OPTICAL DISK DRIVES, MORE THAN 1 GIGABYTE

WORLDWIDE SHIPMENTS (000)

BREAKDOWN BY DISK DIAMETER

	1987 Shipments								1991	
-	Shipme 14"	nts 12"	198 14"	12"	198 14"		199 14"	0 12"	199 14"	12"
- -										
U.S. MANUFACTURERS										
Other U.S. Captive	.1		.1		.1		.2		.3	
0EM		1.3	.1	1.5	.1	2.1	.3	2.8	.4	4.5
TOTAL U.S. SHIPMENTS	.1	1.3	.2	1.5	.2	2.1	.5	2.8	.7	4.5
NON-U.S. MANUFACTURERS										
Captive		2.3		2.7		3.2		3.2		3.4
OEM		4.2	·	7.9	. 	10.4		13.2		17.0
TOTAL NON-U.S. SHIPMENTS	, 	6.5		10.6		13.6		16.4		20.4
WORLDWIDE RECAP										
Captive	.1	2.3 -30.3%	.1	2.7 +17.4%	.1	3.2 +18.5%	+100.0%	3.2	.3 +50.0%	3.4 +6.3%
OEM		5.5 +7.8%	.1	9.4 +70.9%	.1	12.5 +33.0%	.3 +200.0%	16.0 +28.0%	.4 +33.3%	21.5 +34.4%
Total Shipments	.1	7.8 -7.1%	.2 +100.0%	12.1 +55.1%	.2	15.7 +29.8%	.5 +150.0%	19.2 +22.3%	.7 +40.0%	24.9 +29.7%
ANNUAL SHARE, BY DIAMETER	1.3%	98.7%	1.6%	98.4%	1.3%	98.7%	2.5%	97.5%	2.7%	97.3%

TABLE 23
READ/WRITE OPTICAL DISK DRIVES, MORE THAN 1 GIGABYTE

APPLICATIONS SUMMARY Percentage of Worldwide Shipments

	1987 Es	timate	1991 Projection			
APPLICATION	Units (000)	%	Units (000)	%		
MAINFRAME/SUPERMINI General purpose	.7	9.4	1.5	6.0		
MINICOMPUTERS AND MULTI-USER MICROS Business and professional, including networks	2.4	30.3	5.9	23.0		
PERSONAL COMPUTERS Business and professional, single user	.3	4.4	.3	1.0		
OFFICE SYSTEMS AND WORKSTATIONS Dedicated application	2.3	28.1	10.5	41.0		
NON-OFFICE SYSTEMS AND WORKSTATIONS Technical, distribution, medical, other specialized	2.2	27.8	7.4	29.0		
CONSUMER AND HOBBY COMPUTERS		, , , , , , , , , , , , , , , , , , ,				
OTHER APPLICATIONS			 			
Total	7.9	100.0	25.6	100.0		

OPTICAL DISK DRIVE SPECIFICATIONS

<u>Coverage</u>: The following pages list optical disk drives intended for computer data storage which are now announced or in new production. In a few cases, products are listed for which only preliminary announcements have been made. They are included because they are judged to be significant indicators of industry direction in the production period shown. Product specifications and prices given are those in effect at the time of report publication and may be changed without notice by manufacturers.

Recording medium: The composition of the active layer of optical media is the one described by the drive manufacturer. Formulations of other manufacturers may not operate properly. Recording formats also differ, and for products announced to date, recorded media is generally not interchangeable between systems. Where manufacturers specify that more than one type of media is usable, media type is indicated as "Various"

<u>Interface</u>: Specific interfaces are listed for most of the drives. The abbreviation "PC" means the IBM PC/XT or /AT interface.

Speed control: Two abbreviations are used:
CAV=constant angular velocity.
CLV=constant linear velocity.

<u>Capacities</u>: Capacities are listed as "U" for unformatted and "F" for formatted. Because optical drives currently can read only one side of the media, the capacity given is in terms of one side, even if the drive uses two sided media. In general, optical drives are preformatted, so the capacity given will be the formatted capacity. Track capacity in CLV drives is variable, so this parameter is given only for CAV drives. For

CD-ROM drives, the capacity given is the mode 1 capacity as this is the way almost all drives are used.

<u>Positioner type</u>: Many optical drives have multi-stage head positioners. A coarse movement positions the head in the general vicinity of the track to be located. A fine, or vernier, actuator then moves the head to the desired track. Where appropriate, the abbreviation "Crs." is used for "coarse".

<u>OEM prices</u>: The 100 unit price is given for most OEM drives sold in the United States. These prices are often changed by the manufacturers without notice and should be considered as guidelines only.

<u>Accuracy</u>: All of the information in this section has been checked for accuracy. Due to rapid changes in the industry, report users may need to make verbal inquiries of the manufacturers for updates. Where data is not available, the abbreviation "NA" is used. Where a specification is not applicable, the abbreviation "N/A" appears.

1988 DISK/TREND optical disk product groups

For the 1988 report, products are classified in three groups.

Group 10: Read-only optical disk drives.

Group 11: Read/write disk drives, less than 1 gigabyte.

Group 12: Read/write disk drives, more than 1 gigabyte.

Erasable (rewritable) drives are indicated on the line describing the operating mode, with the type of technology used in parenthesis.

MANUFACTURER	ART TECH GIGADISC	ART TECH GIGADISC	ART TECH GIGADISC	CHEROKEE DATA SYSTEMS	EASTMAN KODAK
DRIVE					
	GD1001	GD1002	GD2000	Tracker	6800
DISK/TREND GROUP	12	12	12	11	12
MARKET	0EM	OEM	OEM	OEM	Captive, OEM
MEDIA: Nominal disk diameter	12"	12"	12"	130 mm	14"
Recording medium	Au-Cr-Polymer	Au-Cr-Polymer	Au-Cr-Polymer	Te0x	Dye Polymer
Track format	Spiral	Spiral	Spiral	Spiral,Concent.	Spiral (Zone)
DRIVE: Operating mode	Write Once	Write Once	Write Once	Write Once	Write Once
Interface	SCSI, Prop.	SCSI	SCSI	ESDI	SCSI, IPI-3
Speed control	CAV	CAV	CAV	CAV	CLV
CAPACITY/RECORDING DENSITY					
Total capacity (Mbytes)	F: 1,000	F: 1,000	F: 3,200	F: 260	F: 3,400
Capacity per track (Bytes)	F: 25,600	F: 25,600	F: NA	F: 20,754	F: N/A
Data surfaces per spindle	1	1	1	1	1
Tracks per surface	40000	40000	NA	14178	58200
Track density (TPI)	14514	14514	14514	15000	14111
Maximum linear density (BPI)	15200	15200	NA	15000	21000
Rotational speed (RPM)	1121.5	1121.5	1121.5	1613	800-1600
PERFORMANCE	Crs. Voice Coil	Crs. Voice Coil	Crs. Voice Coil	Crs: Voice Coil	Cree Linear
Positioner type	Fine: Solenoid				Fine: Lens Actuator
Average positioning time (msec)	200	110	100	130	500
Within fine band (msec)	28	8	NA	NA	100
Fine band capacity (Mbytes)	112 (tracks)	78	NA	 NA	NA
Average rotational delay (msec)	27	27	27	18.6	27
Average access time (msec)	227	138	127	127	527
Data transfer rate (KBytes/sec)	470	470	1000	406.25	1000
FIRST CUSTOMER SHIPMENT	3084	2088	1989	1088	1987
U.S. OEM PRICE FOR 100 UNITS	\$6,933				\$24,800
COMMENTS				Can be used in harsh environments	\$32,800 with controller
		·	Preliminary specification		

MANUFACTURER	FUJITSU	FUJITSU	FUJITSU	HITACHI	HITACHI
DRIVE					
	M2505B	F6441B1	M2502A/B	CDR 1503S CDR 1553S	CDR 3500 CDR 3550
DISK/TREND GROUP	11	12	12	10	10
MARKET	OEM	Captive	OEM	Captive, OEM	OEM
MEDIA: Nominal disk diameter	130 mm	12"	12"	120 mm	120 mm
Recording medium	Te Alloy	Te Alloy	Te Alloy	Aluminum	Aluminum
Track format	Spiral	Concentric	Spiral	Spiral	Spiral
DRIVE: Operating mode	Write Once	Write Once	Write Once	Read Only	Read Only
Interface	ESDI, SCSI	Modified 3350	Mod. SMD, SCSI	SCSI, PC	SCSI, Prop.
Speed control	CAV	CAV	CAV	CLV	CLV
CAPACITY/RECORDING DENSITY					
Total capacity (Mbytes)	F: 300	F: 1,376	F: 1,800	F: 552	F: 552
Capacity per track (Bytes)	F: 16,325	F: 30,720	F: 38,912	F: N/A	F: N/A
Data surfaces per spindle	1	1	1	1	1
Tracks per surface	18320	44800	46260	20750	20750
Track density (TPI)	15875	15875	15875	15875	15475
Maximum linear density (BPI)	24924	24144	25133	27600	27600
Rotational speed (RPM)	1800	900	900	535-200	535-200
PERF ORMANCE	Cua. Stanning	Cro. Maina Cail	Crs: Voice Coil	Con Matau	Constant
Positioner type	Crs: Stepping Motor Fine: Lens Actuator	Fine: Lens Actuator	Fine: Lens Actuator	Fine: Lens Actuator	Crs: Motor Fine: Lens Actuator
Average positioning time (msec)	100	216.7	190	190	690
Within fine band (msec)	NA	NA	NA	N/A	N/A
Fine band capacity (Mbytes)	NA	NA .	NA	N/A	N/A
Average rotational delay (msec)	16.67	33.3	33.3	110	110
Average access time (msec)	116.67	250	223.3	800	800
Data transfer rate (KBytes/sec)	693.6	783	816	153.6	153.6
FIRST CUSTOMER SHIPMENT	9/87	3Q85	1089	2087	4087
U.S. OEM PRICE FOR 100 UNITS		N/A	N/A		
COMMENTS		Available only in Japan. F6441A1 has SCSI interface. F6442B2 is 32 disk library.	M2502A has SCSI interface	CDR 1553 has SCSI interface S models are stand alone	41 mm high CDR 3550 has SCSI interface

MANUFACTURER	HITACHI	HITACHI	HITACHI	IBM	INFORMATION STORAGE INC.
DRIVE			,		
•				3363-A01 3363-A11	
	M-301S	OD 101-1	OD 301A-1	3363-B01 3363-8700	525 GB 525 GBX
DISK/TREND GROUP	11	11	12	11	11
MARKET	OEM	Captive, OEM	Captive, OEM	Captive	OEM
MEDIA: Nominal disk diameter	130 mm	130 mm	300 mm	130 mm	130 mm
Recording medium	Various*	Te-Se-Pb	Te-Se-Pb	Doped Te0x	Te Alloy
Track format	Spiral	Spiral	Spiral	Spiral	Concentric
DRIVE: Operating mode	Write Once	Write Once	Write Once	Write Once	Write Once
Interface	SCSI	SCSI	SCSI, GPIB, SMD	IBM	SCSI, Prop., PC
Speed control	CAV	CAV	CAV	CAV	CAV
CAPACITY/RECORDING DENSITY					
Total capacity (Mbytes)	F: 320	F: 300	F: 1,310	F: 201.36	F: 640
Capacity per track (Bytes)	F: 16,000	F: 16,400	F: 31,700	F: 11,776	F: 20,000
Data surfaces per spindle	1	1	1	1	1
Tracks per surface	20000	18624	41300	17100	32000
Track density (TPI)	16942	16000	16000	15875	35000
Maximum linear density (BPI)	24500	24000	19500	21166	32000
Rotational speed (RPM)	1800	1800	600	875	1800
PERFORMANCE	Crs. Voice Coil	Crs. Voice Coil	Cree Voice Cail	Crs: Voice Coil	Crs. Stonning
Positioner type	Fine: Lens Actuator			Fine: Galvonom.	Motor
Average positioning time (msec)	100	93	200	230	90
Within fine band (msec)	NA	NA	NA .	NA .	8
Fine band capacity (Mbytes)	NA	NA	NA	NA	4
Average rotational delay (msec)	16.7	17	50	34.3	16.7
Average access time (msec)	116.7	110	250	274.3	106.7
Data transfer rate (KBytes/sec)	487.5	690	440	171	812.5
FIRST CUSTOMER SHIPMENT	1989	2087	3Q85	2Q87	4/88
U.S. OEM PRICE FOR 100 UNITS		\$3,000	\$5,800		\$2,200
COMMENTS	*Uses phase change or ablative media	Price includes controller	Price includes controller	Mechanism by Matsushita Electric	525 GBX is external mount; dual drive available
	Preliminary specification		-		

MANUFACTURER	INFORMATION STORAGE INC.	JVC	KAWATETSU ADVANTECH	LASER MAGNETIC STORAGE	LASER MAGNETIC STORAGE
DRIVE				JURAGE	3 TORAGE
	·				
	525 WC	XR-R100 XR-R1001	KL200S	CM100 CM110	CM121
DISK/TREND GROUP	11	10	11	10	10
MARKET	OEM	OEM	OEM	OEM	OEM
MEDIA: Nominal disk diameter	130 mm	120 mm	130 mm	120 mm	120 mm
Recording medium	Te Alloy	Aluminum	Te Alloy	Aluminum	Aluminum
Track format	Concentric	Spiral	Concentric	Spiral	Spiral
DRIVE: Operating mode	Write Once	Read Only	Write Once	Read Only	Read Only
Interface	ESDI, SCSI, PC	SCSI	ESDI, SCSI, PC	Proprietary	Serial
Speed control	CAV	CLV	CAV	CLV	CLV
CAPACITY/RECORDING DENSITY					
Total capacity (Mbytes)	F: 122	F: 540	F: 122	F: 600	F: 600
Capacity per track (Bytes)	F: 8,192	F: N/A	F: 8,192	F: N/A	F: N/A
Data surfaces per spindle	1	1	1	1	1
Tracks per surface	14901	20750	14901	20750	20750
Track density (TPI)	15875	15875	15875	15875	15875
Maximum linear density (BPI)	11500	27600	11500	27600	27600
Rotational speed (RPM)	1800	530-200	1800	500-200	500-200
PERFORMANCE	Crs: Stepping	Crs: Voice Coil	Crs: Stepping	Rotary	Rotary
Positioner type	Motor Fine: Galvonom.	Fine: Lens Actuator	Motor Fine: Galvonom.	Galvonometer	Galvonometer
Average positioning time (msec)	150	300	135	890	500
Within fine band (msec)	NA	N/A	21.6	N/A	N/A
Fine band capacity (Mbytes)	NA .	N/A	1.2	N/A	N/A
Average rotational delay (msec)	16.7	110	16.7	110	110
Average access time (msec)	166.7	410	151.7	1000	610
Data transfer rate (KBytes/sec)	312.5	153.6	300	153.6	153.6
FIRST CUSTOMER SHIPMENT	3085	3087	1087	1085	8/88
U.S. OEM PRICE FOR 100 UNITS	\$1,100			\$540	
COMMENTS	Grooveless tracking system	41 mm high XR-R100 is	Grooveless tracking system	CM110 has SCSI interface	
	ISI will certify media	free standing	Licensee of ISI	\$650 with controller	

MANUFAC	TURER	LASER MAGNETIC STORAGE	LASER MAGNETIC STORAGE	LASER MAGNETIC STORAGE	LASER MAGNETIC STORAGE	LASERDRIVE
DRIVE						
		CM131 CM132	CM201 CM210	510	1200E 1250E	0D810 0D820 0D840 0D850
DISK/TR	END GROUP	10	10	11	12	11
MARKET		OEM	OEM	ОЕМ	OEM	OEM
MEDIA:	Nominal disk diameter	120 mm	120 mm	130 mm	12"	130 mm
	Recording medium	Aluminum	Aluminum	Te Alloy	Te Alloy	Te-C, Te Alloy
	Track format	Spiral	Spiral	Spiral	Spiral	Spiral
DRIVE:	Operating mode	Read Only	Read Only	Write Once	Write Once	Write Once
	Interface	SCSI	SCSI, PC-XT	SCSI	scsi, isi	SCSI, Prop.
	Speed control	CLV	CLV	CAV	CAV	CLV
CAPACIT	Y/RECORDING DENSITY					
Tota l	capacity (Mbytes)	F: 600	F: 600	F: 327	F: 1,000	F: 405
Capac	ity per track (Bytes)	F: N/A	F: N/A	F: 16,384	F: 32,800	F: 21,000 avg.
Data	surfaces per spindle	1	1	1	1	1
Track	s per surface	20750	20750	19928	32000	18750
Track	density (TPI)	15875	15875	NA	15875	15875
Maxim	num linear density (BPI)	27600	27600	NA	14111	20159
Rotat	ional speed (RPM)	500-200	500-230	2160	480	1114-557
PERFORM	ANCE	Dotoni	Dotani	Cura Linasu	Linon	Cura Stanzina
Posit	ioner type	Rotary Galvonometer	Rotary Galvonometer	Crs: Linear, Voice Coil Fine: Galvonom.	Linear, Voice Coil	Crs: Stepping Motor Fine: Galvonom.
Avera	ge positioning time (msec)	500 ⁻	415	75	150	135
	Within fine band (msec)	N/A	N/A	NA	N/A	21
	Fine band capacity (Mbytes)	N/A	N/A	NA NA	N/A	3.1 avg.
Avera	ge rotational delay (msec)	110	85	13.7	62.5	40
Avera	ge access time (msec)	610	500	91.7	213	175
Data	transfer rate (KBytes/sec)	153.6	153.6	600	313	347
	USTOMER SHIPMENT	8/88	2087	4088	3083	4087
	M PRICE FOR 100 UNITS			\$2675	\$11,250	\$1500
COMMENT		CM132 is two drive package	41 mm high. CM210 has SCSI interface	Sampled servo format	Has Direct Read During Write	OD810 for PC/AT OD820 for Apple OD840 for Microvax II
			Uses LMS cartridge		1250E is rack mounted	0D850 for PS/2
		L				

MANUFACTURER	MATSUSHITA COMMUNICATION INDUSTRIAL	MATSUSHITA COMMUNICATION INDUSTRIAL	MATSUSHITA ELECTRIC INDUSTRIAL	ELECTRONIC	MATSUSHITA ELECTRONIC COMPONENTS
DRIVE	INDUSTRIAL	INDUSTRIAL	THOUSTRIAL	CON ONENTS	CON ONENTS
	JU-9400	JU-9500	LF-5000 LF-5001	S0 D1	SO D101
DACK/TREND CROUP					SQ-D101 10
DISK/TREND GROUP	11	11	11	10	
MARKET	0EM	0EM	0EM	Captive, OEM	Captive, OEM
MEDIA: Nominal disk diameter	130 mm	130 mm	130 mm	120 mm	120 mm
Recording medium	Te Alloy	Tb-Fe-Co	Te-0x	Aluminum	Aluminum
Track format	Spiral	Spiral	Spiral	Spiral	Spiral
DRIVE: Operating mode	Write Once	Erasable (MO)	Write Once	Read Only	Read Only
Interface	SCSI	SCSI	SCSI	SCSI, PC	SCSI, PC
Speed control	CAV	CAV	CAV	CLV	CLV
CAPACITY/RECORDING DENSITY					
Total capacity (Mbytes)	F: 300	F: 262	F: 200	F: 540	F: 540
Capacity per track (Bytes)	F: 16,000	F: 16,000	F: 11,776	F: N/A	F: N/A
Data surfaces per spindle	1	1	1	1	1
Tracks per surface	18598	16200	17100	20750	20750
Track density (TPI)	15875	15875	15875	15875	15875
Maximum linear density (BPI)	24937	24937	21166	27600	27600
Rotational speed (RPM)	2400	2400	875	530-200	530-200
PERFORMANCE					
Positioner type	Crs: Linear, Voice Coil	Crs: Linear, Voice Coil		Crs: Voice Coil	
•	Fine: Lens Actuator	Fine: Lens Actuator	Fine: Galvonom.	Fine: Voice Coil	Fine: Voice Coil
Average positioning time (msec)	62.5	62.5	190	540	540
Within fine band (msec)	13	13	45	N/A	N/A
Fine band capacity (Mbytes)	1.6	1.6	.588	N/A	N/A
Average rotational delay (msec)	12.5	12.5	34.3	110	110
Average access time (msec)	75	75	264.3	650	650
Data transfer rate (KBytes/sec)	925	925	171	153.6	153.6
FIRST CUSTOMER SHIPMENT	2087	4/88	2088	1087	1087
U.S. OEM PRICE FOR 100 UNITS					
COMMENTS		Glass substrate		41 mm high	Free standing
			e e		
					·

MANUFAC	TURER	MATSUSHITA GRAPHIC COMMUNICATION	MAXIMUM STORAGE	MAXIMUM STORAGE	MAXIMUM STORAGE	MAXTOR
DRIVE		COMMONITORY				
		PF-10 PF-3000	APX-3200	APX-4200	APX-4300	Fiji
DISK/TR	END GROUP	11	11	11	11	11
MARKET		Captive, OEM	OEM	OEM	ОЕМ	OEM
MEDIA:	Nominal disk diameter	200 mm	130 mm	130 mm	130 mm	90 mm
	Recording medium	Te-0x	Te Alloy	Te Alloy	Te Alloy	RE-TM Alloy
	Track format	Spiral	Concentric	Concentric	Concentric	Spiral, (Zone)
DRIVE:	Operating mode	Write Once	Write Once	Write Once	Write Once	Erasable (MO)
	Interface	Proprietary	Mod. ESDI, PC	Mod. ESDI, PC	SCSI, Sun	SCSI
	Speed control	CLV	CAV	CAV	CAV	CAV
CAPACIT	Y/RECORDING DENSITY					
Total	capacity (Mbytes)	F: 700	F: 122	F: 500	F: 500	F: 160
Capac	ity per track (Bytes)	F: 32,000	F: 8,192	16,384	16,384	F: NA
Data	surfaces per spindle	1	1	1	1	1
Track	s per surface	23330	14901	14901	14901	NA
Track	density (TPI)	23333	14100	14100	14100	15875
Maxim	num linear density (BPI)	15394	11400	21069	21069	20269
Rotat	ional speed (RPM)	900	1800	1800	1800	750
PERFORM	IANCE	Linear,	Crs: Stepping	Crs: Stepping	Crs: Stepping	Crs: Voice Coil
Posit	ioner type	Voice Coil	Motor Fine: Lens Actuator	Motor Fine: Lens Actuator	Motor Fine: Lens Actuator	Fine: Lens Actuator
Avera	ge positioning time (msec)	200	118	NA	NA .	100
	Within fine band (msec)	N/A	20	NA	NA	N/A
	Fine band capacity (Mbytes)	N/A	1.31	NA	NA	N/A
Avera	ge rotational delay (msec)	180	16.7	16.7	16.7	40
Avera	ge access time (msec)	380	135	NA	NA	140
Data	transfer rate (KBytes/sec)	675	312.5	625	625	237.5*
FIRST C	USTOMER SHIPMENT	2086	3Q87	3088	4088	9/88
U.S. 0E	M PRICE FOR 100 UNITS		\$1,875	\$3,115		
COMMENT	S	Available only in Japan		Cartridges compatible with APX-3200, APX-4300	Cartridges compatible with APX-3200, APX-4200	*Average. Mechanism from Seiko Epson Single sided cartridge

MANUFAC	TURER	MAXTOR	MITSUBISHI ELECTRIC CORPORATION	NEC	NEC	NEC
DRIVE	•					
		ν.				
		Tahiti	MW-5D1-11	CDR 77 CDR 80	N5267-31	PC-CD101
DISK/TRI	END GROUP	11	11	10	10	10
MARKET		OEM	OEM	OEM	Captive	Captive
MEDIA:	Nominal disk diameter	130 mm	130 mm	120 mm	120 mm	120 mm
	Recording medium	RE-TM Alloy	Te-Se	Aluminum	Aluminum	Aluminum
	Track format	Spiral, (Zone)	Spiral	Spiral	Spiral	Spiral
DRIVE:	Operating mode	Erasable (MO)	Write Once	Read Only	Read Only	Read Only
	Interface	SCSI	ESDI, SCSI	SCSI	scsi	SCSI, Prop.
	Speed control	CAV	CAV	CLV	CLV	CLV
CAPACIT	Y/RECORDING DENSITY					
Total	capacity (Mbytes)	F: 512/326	F: 300	F: 540	F: 540	F: 540
Capac	ity per track (Bytes)	F: 25,000	F: 15,872	F: N/A	F: N/A	F: N/A
Data	surfaces per spindle	1	1	1	1	1
Track	s per surface	25000	18750	20750	20750	20750
Track	density (TPI)	16933	15875	15875	15875	15875
Maxim	um linear density (BPI)	25000**	24700	27600	27600	27600
Rotat	ional speed (RPM)	2200/1800	1800	530-200	530-200	530-200
PERFORM	ANCE					
Posit	ioner type	Crs: Voice Coil Fine: Lens Actuator	Crs: Linear, Voice Coil Fine: Lens Actuator	Crs: Stepping Motor Fine: Lens Actuator	Linear, Voice Coil	Crs: Stepping Motor Fine: Lens Actuator
Avera	ge positioning time (msec)	30	63	500	650	500
,	Within fine band (msec)	26	1.5	N/A	N/A	N/A
. 1	Fine band capacity (Mbytes)	2	.317	N/A	N/A	N/A
Avera	ge rotational delay (msec)	13.6/16.7	17	85	110	85
Avera	ge access time (msec)	43.5/46.7	80	585	610	585
Data	transfer rate (KBytes/sec)	1250*	687.5	153.6	150	153.6
FIRST C	USTOMER SHIPMENT	9/88	1088	2088	2087	1087
U.S. OEI	M PRICE FOR 100 UNITS					
COMMENT	S	*Average		41 mm high	Stand alone	Mechanism from
		Actuator has		CDR 77 is	type	NEC Home Electronics
		split optics	·	external model		For PC9800
		**2,7 RLL Code				

MANUFACTURER	NEC	NEC	NIKON	NIPPON COLUMBIA	NIPPON COLUMBIA
DRIVE					
	N6329-21 N7911	N6513	MO-DD120C	DRD-251 DRD-253	DRD-250 DRD-252
DISK/TREND GROUP	12	12	12	10	10
MARKET	Captive	Captive	OEM	OEM	OEM
MEDIA: Nominal disk diameter	12"	12"	12"	120 mm	120 mm
Recording medium	Tri-layer	Te-Alloy	TbFe, GdFeCo	Aluminum	Aluminum
Track format	Concentric	Spiral	Spiral	Spiral	Spiral
DRIVE: Operating mode	Write Once	Write Once	Erasable (MO)	Read Only	Read Only
Interface	SCSI, Prop.	SCSI, Prop.	SCSI	SCSI	Proprietary
Speed control	CAV	Zone CLV	CAV	CLV	CLV
CAPACITY/RECORDING DENSITY					
Total capacity (Mbytes)	F: 1,016	F: 1,800	F: 2,700	F: 553	F: 553
Capacity per track (Bytes)	F: 32,768	29,500-56,500	F: NA	F: N/A	F: N/A
Data surfaces per spindle	1	1	1	1	1
Tracks per surface	31000	41000	NA	20750	20750
Track density (TPI)	15900	15875	15875	15475	15475
Maximum linear density (BPI)	20000	20000	N/A	26008	26008
Rotational speed (RPM)	900	600-330	1800	535-194	535-194
PERFORMANCE	Crs: Linear,	Crs. Voice Coil	Crs: Voice Coil	linear	Linear,
Positioner type	Voice Coil Fine: Lens Actuator	Fine: Lens Actuator	Fine: Galvonom.	Voice Coil	Voice Coil
Average positioning time (msec)	270	650	70	300	300
Within fine band (msec)	NA	NA	NA	N/A	N/A
Fine band capacity (Mbytes)	NA	NA	NA	N/A	N/A
Average rotational delay (msec)	33.3	50-90	16.7	110	110
Average access time (msec)	303.3	700-740	86.7	410	410
Data transfer rate (KBytes/sec)	785	452	1800	153.6	153.6
FIRST CUSTOMER SHIPMENT	4Q83	1087	1989	3086	3086
U.S. OEM PRICE FOR 100 UNITS				·	
COMMENTS	N7921 is drive			41 mm high	41 mm high
	library unit Forty-eight disk capacity		Preliminary specification	DRD-253 mounts externally	DRD-252 mounts externally
		L	L	<u> </u>	

MANUFAC	CTURER	NIPPON COLUMBIA	NIPPON COLUMBIA	OLYMPUS OPTICAL	OPTIMEM	OPTIMEM
DRIVE					***************************************	
		DRD-550 DRD-552 DRD-554	DRD-551 DRD-553 DRD-555	ME-D5010E	1000 1/2 1000 6/7	2400 1/2
DISK/TR	REND GROUP	10	10	11	12	12
MARKET		OEM	OEM	OEM	OEM	ОЕМ
MEDIA:	Nominal disk diameter	120 mm	120 mm	130 mm	12"	12"
	Recording medium	Aluminum	Aluminum	Tb-Fe-Co	3M	зм
	Track format	Spiral	Spiral	Concentric	Spiral	Spiral
DRIVE:	Operating mode	Read Only	Read Only	Erasable (MO)	Write Once	Write Once
	Interface	SASI, SCSI	Proprietary	ESDI, SCSI	SASI,SCSI,Prop.	SCSI
	Speed control	CLV	CLV	CAV	CAV	CAV
CAPACIT	TY/RECORDING DENSITY				·	
Tota	l capacity (Mbytes)	F: 553	F: 553	F: 326	F: 1,000	F: 1,200
Capac	city per track (Bytes)	F: N/A	F: N/A	F: 23,120	F: 25,000	F: 25,000
Data	surfaces per spindle	1	1	1	1	1
Track	ks per surface	20750	20750	18750	40000	46900
Track	density (TPI)	15475	15475	15875	14514	16933
Maxim	num linear density (BPI)	26008	26008	24923	15339	15339
Rota	tional speed (RPM)	535-194	535-194	1800	1122	1122
PERFORM	1ANCE			0	0 4.1. 0.11	0 1
Posit	tioner type	Linear, Voice Coil	Linear, Voice Coil	Fine: Lens Actuator	Crs: Voice Coil Fine: Galvonom.	
Avera	age positioning time (msec)	190	190	84	150	150
	Within fine band (msec)	N/A	N/A	64	3	3
	Fine band capacity (Mbytes)	N/A	N/A	.81	8.3	8.3
Avera	age rotational delay (msec)	110	110	16.7	27.5	27.5
Avera	age access time (msec)	300	300	100.7	177.5	177.5
Data	transfer rate (KBytes/sec)	153.6	153.6	625	625	625
FIRST (CUSTOMER SHIPMENT	4Q85	4085	4Q88	2Q84	4Q87
U.S. 0E	EM PRICE FOR 100 UNITS		w		\$6,900	\$8,500
COMMENT	rs	DRD 550 mounts in full height slot	External mount except for DRD-551	Continuous servo format	1000/S includes host adaptor for PC	Model 2400-1 includes controller
		DRD-554 has audio output	DRD-555 has audio output			

	PIONEER	PIONEER	PIONEER	PIONEER	REFERENCE TECHNOLOGY
DRIVE					
	DD-8001/KU	DD-8002 DD-8002/KU	DDM-5001	DDU-5001	2000
DISK/TREND GROUP	11	11	11	11	10
MARKET	OEM	OEM	OEM	OEM	OEM
MEDIA: Nominal disk diameter	203 mm	203 mm	130 mm	130 mm	12"
Recording medium	Cyanine Dye	Cyanine dye	Cyanine dye	Cyanine dye	Aluminum
Track format	Spiral	Spiral	Spiral	Spiral	Spiral
DRIVE: Operating mode	Write Once	Write Once	Write Once	Write Once	Read Only
Interface	SCSI	Prop.,IBM Ser.I	N/A	SCSI, Prop.	scsi
Speed control	CAV	CAV	CAV	CAV	CAV
CAPACITY/RECORDING DENSITY					
Total capacity (Mbytes)	F: 750	F: 750	F: 327	F: 327	F: 1,000
Capacity per track (Bytes)	F: 32,432	F: 32,768	F: 16,384	F: 16,384	F: 19,600
Data surfaces per spindle	1	1	1	1	1
Tracks per surface	23125	23125	19958	19958	51000
Track density (TPI)	15875	15875	15875	15875	14896
Maximum linear density (BPI)	15875	15875	15875	15875	24000
Rotational speed (RPM)	450	450	1800	1800	1800
PERFORMANCE	C	0	00.1	0	
Positioner type	1			Crs: Voice Coil	
	Fine: Galvonom.	Fine: Galvonom.	Fine: Galvonom.	Fine: Galvonom.	Fine: Galvonom.
Average positioning time (msec)	184	250	60	60	125
Within fine band (msec)	NA	NA	NA	NA	NA
Fine band capacity (Mbytes)	NA	NA	NA	NA	NA
Average rotational delay (msec)	66	66.7	16.7	16.7	16.7
Average access time (msec)	250	316.7	76.7	76.7	151
Data transfer rate (KBytes/sec)	308	307.5	742.5	742.5	1000
FIRST CUSTOMER SHIPMENT	4085	4086	2Q88	2088	4Q84
U.S. OEM PRICE FOR 100 UNITS					\$8,900
COMMENTS		8002 has IBM Series/1 interface	41 mm high Mechanism only	Sample servo format	
			Sample servo format		

MANUFAC	TURER	RICOH	RICOH	SANYO	SANYO	SANYO
DRIVE						
					ROM-2500U	R0M-2501U
		RO-5040WL	RO-5041WL	ROM-2500	ROM-2500US	ROM-2501US
DISK/TR	END GROUP	11	11	10	10	10
MARKET		Captive, OEM	Captive, OEM	Captive, OEM	ОЕМ	ОЕМ
MEDIA:	Nominal disk diameter	130 mm	130 mm	120 mm	120 mm	120 mm
	Recording medium	Cyanine Dye	Cyanine Dye	Aluminum	Aluminum	Aluminum
•	Track format	Spiral	Spiral	Spiral	Spiral	Spiral
DRIVE:	Operating mode	Write Once	Write Once	Read Only	Read Only	Read Only
	Interface	SCSI	scsi	Proprietary	Proprietary	SCSI
	Speed control	CLV	CLV	CLV	CLV	CLV
CAPACIT	Y/RECORDING DENSITY					
Total	capacity (Mbytes)	F: 400	F: 400	F: 540	F: 540	F: 540
Capac	ity per track (Bytes)	F: N/A	F: N/A	F: N/A	F: N/A	F: N/A
Data	surfaces per spindle	1	1	1	1	1
Track	s per surface	18750	18750	20750	20750	20750
Track	density (TPI)	15900	15900	15875	15875	15875
Maxim	um linear density (BPI)	32200	32200	27600	27600	27600
Rotat	ional speed (RPM)	668-334	668-334	530-200	530-200	530-200
PERFORM	ANCE	Cra. Vaica Cail	Crs: Voice Coil	Casalinosa	Casalinoan	Cma. Lincon
Posit	ioner type	Fine: Voice	Fine: Voice	Fine: Lens	Crs: Linear Fine: Lens	Crs:. Linear Fine: Lens
		Coil	Coil	Actuator	Actuator	Actuator
Avera	ge positioning time (msec)	108	108	300	300	300
	Within fine band (msec)	N/A	N/A	N/A	N/A	N/A
	Fine band capacity (Mbytes)	N/A	N/A	N/A	N/A	N/A
Avera	ge rotational delay (msec)	60	60	108	108	108
Avera	ge access time (msec)	168	168	408	408	408
Data	transfer rate (KBytes/sec)	312.5	312.5	153	153	153
FIRST C	USTOMER SHIPMENT	4086		7/87	2/88	2/88
U.S. 0E	M PRICE FOR 100 UNITS					
COMMENT	S	SCSI controller	41 mm high	41 mm high	41 mm high	41 mm high
		included in price	SCSI controller included in price	External mount	S models have	S models have
		Library unit	Library unit		audio output	audio output
		available	available		Internal mount	Internal mount

MANUFACTURER	SANYO	SANYO	SANYO	SANYO	SHARP
DRIVE					
	,				
	ROM-3000U ROM-3000US	ROM-3001U ROM-3001US	S0F-M90	S0F-8501	JY-500
DISK/TREND GROUP	10	10	11	12	11
MARKET	OEM	OEM	OEM	Captive	OEM
MEDIA: Nominal disk diameter	120 mm	120 mm	130 mm	300 mm	130 mm
Recording medium	Aluminum	Aluminum	Te Alloy	Te Alloy	RE-TM(Tb-Fe-Co)
Track format	Spiral	Spiral	Spiral	Concentric	Spiral
DRIVE: Operating mode	Read Only	Read Only	Write Once	Write Once	Erasable (MO)
Interface	Proprietary	SCSI	SCSI	Proprietary	SCSI
Speed control	CLV	CLV	CAV	CAV	CAV
CAPACITY/RECORDING DENSITY					
Total capacity (Mbytes)	F: 540	F: 540	F: 600	F: 1,100	F: 190
Capacity per track (Bytes)	F: N/A	F: N/A	F: 31,996	F: 25,000	F: 10,133
Data surfaces per spindle	1	1	1	1	1
Tracks per surface	20750	20750	18752	44000	18750
Track density (TPI)	15875	15875	16000	14100	15875
Maximum linear density (BPI)	27600	27600	24000	NA	NA
Rotational speed (RPM)	530-200	530-200	1800	690	900
PERFORMANCE	Crs: Linear	Crs: Linear	Crs: Linear	Crs: Linear	Crs: Linear,
Positioner type	Fine: Lens Actuator	Fine: Lens Actuator	Fine: Lens Actuator		Voice Coil Fine: Lens Actuator
Average positioning time (msec)	500	500	93	25.5	150
Within fine band (msec)	N/A	N/A	NA	NA	NA
Fine band capacity (Mbytes)	N/A	N/A	NA	NA	NA
Average rotational delay (msec)	108	108	17	45	33.2
Average access time (msec)	608	608	110	300	183.2
Data transfer rate (KBytes/sec)	153	153	1500	125	150
FIRST CUSTOMER SHIPMENT	2/88	5/88	1987	1985	12/87
U.S. OEM PRICE FOR 100 UNITS				1	
COMMENTS	S models have audio output	S models have audio output	Continuous servo format	Available only in Japan	Media uses glass substrate
	External mount	External mount			External mount
					<u> </u>

MANUFACTURER	SHUGART	SONY	SONY	SONY	SONY
DRIVE	5984 5984AT	CDU-510	CDU-6100 CDU-6101 CDU-6110 CDU-6111	CDU-7101	SMO-D510
DISK/TREND GROUP	11	10	10	10	11
MARKET	OEM	OEM	OEM	Captive	Captive, OEM
MEDIA: Nominal disk diameter	130 mm	120 mm	120 mm	120 mm	130 mm
Recording medium	Te-Se	Aluminum	Aluminum	Aluminum	Tb-Fe-Co
Track format	Spiral,Concent.	Spiral	Spiral	Spiral	Spiral
DRIVE: Operating mode	Write Once	Read Only	Read Only	Read Only	Erasable (MO)
Interface	SCSI, PC	SCSI	SCSI, Prop.	IBM PC XT	SCSI, ESDI
Speed control	CAV	CLV	CLV	CLV	CAV
CAPACITY/RECORDING DENSITY					
Total capacity (Mbytes)	F: 202	F: 540	F: 540	F: 540	F: 325
Capacity per track (Bytes)	F: 10,752	F: N/A	F: N/A	F: N/A	F: 17,408
Data surfaces per spindle	1	1	1	1	1
Tracks per surface	18826	20750	20750	20750	18751
Track density (TPI)	15625	15875	15875	15875	15875
Maximum linear density (BPI)	14620	27600	27600	27600	24902
Rotational speed (RPM)	1200	500-200	500-200	500-200	2400
PERFORMANCE Positioner type	Crs: Stepping Motor Fine: Voice Coil	Linear, Voice Coil	Linear, Voice Coil	Linear, Voice Coil	Crs: Linear, Voice Coi Fine: Lens Actuator
Average positioning time (msec)	170	N/A	N/A	N/A	90
Within fine band (msec)	NA	N/A	N/A	N/A	20
Fine band capacity (Mbytes)	NA	N/A	N/A	N/A	22
Average rotational delay (msec)	25	150	150	150	12.5
Average access time (msec)	195	500	500	500	102.5
Data transfer rate (KBytes/sec)	275	153.6	153.6	153.6	680
FIRST CUSTOMER SHIPMENT	3085			5/88	2088
U.S. OEM PRICE FOR 100 UNITS	\$2,300				
COMMENTS	AT version mounts in IBM PC/AT	41 mm high	External mount. CDU-6110 & 6111 have SCSI intf. CDU-6101 & 6111 have audio output.		ISO standard

MANUFACTURER	ſ	SONY	SONY	TOSHIBA	TOSHIBA	TOSHIBA
DRIVE						
				·		
		WDD 2000	WDD 3000	XM-2100A	XM-3100B	XM-3101B
DISK/TREND GROUP		11	12	10	10	10
MARKET		Captive, OEM	Captive, OEM	OEM	OEM	OEM
MEDIA: Nominal disk	diameter	200 mm	300 mm	120 mm	120 mm	120 mm
Recording med	dium	Se-Sb, Bi-Te	Se-Sb, Bi-Te	Aluminum	Aluminum	Aluminum
Track format		Spiral	Spiral	Spiral	Spiral	Spiral
DRIVE: Operating mod	de	Write Once	Write Once	Read Only	Read Only	Read Only
Interface		SCSI, Prop.	SCSI, Prop.	SCSI	SCSI	SCSI
Speed control	1	CLV	CAV, CLV	CLV	CLV	CLV
CAPACITY/RECORDING DE	ENSITY					
Total capacity (Mby	ytes)	F: 500	F: 1,100/1,600	F: 600	F: 600	F: 600
Capacity per track	(Bytes)	F: N/A	F: 25,600	F: N/A	F: N/A	F: N/A
Data surfaces per s	spindle	1	1	1	1	1
Tracks per surface		18750	43750	20750	20750	20750
Track density (TPI))	12700	15875	15875	15875	15875
Maximum linear dens	sity (BPI)	25391	24937	27600	27600	27600
Rotational speed (F	RPM)	900-535	720/720-360	530-200	530-200	530-200
PERFORMANCE		Crs. Voice Cail	Cree Voice Coil	Cree Voice Coil	Crs: Voice Coil	Crs. Voice Coil
Positioner type	I	Fine: Lens Actuator	Fine: Lens Actuator	Fine: Lens Actuator	Fine: Lens Actuator	Fine: Lens Actuator
Average positioning	g time (msec)	250	250/620	300	300	300
Within fine ba	and (msec)	25	25	N/A	N/A	N/A
Fine band capa	acity (Mbytes)	1.25	1.25	N/A	N/A	N/A
Average rotational	delay (msec)	44.7	42/62.5	100	100	100
Average access time	e (msec)	295	292/682.5	400	400	400
Data transfer rate	(KBytes/sec)	300	300	153.6	153.6	153.6
FIRST CUSTOMER SHIPME	ENT	4084	2085	4Q86	2086	1088
U.S. OEM PRICE FOR 10	OO UNITS	\$5,300	\$7,200			
COMMENTS		Controller is	Controller is	Embedded SCSI	41 mm high	41 mm high
		\$4,000	\$4,000	controller and audio External mount	Embedded SCSI controller	Embedded SCSI controller and audio
				•		
	- L					

MANUFACTURER	TOSHIBA	TOSHIBA	TOSHIBA	TOSHIBA	VERBATIM
DRIVE					
	WM-D050	WM-D070	DF-0450 DF-0460	WM-S500	MOD 1
DISK/TREND GROUP	11	11	12	12	11
MARKET	Captive, OEM	OEM	Captive, OEM	ОЕМ	ОЕМ
MEDIA: Nominal disk diameter	130 mm	130 mm	12"	12"	95 mm
Recording medium	Te-C	Te-C	Te-C	Te-C	Tb-Fe-Co
Track format	Spiral	Spiral	Spiral	Spiral	Concentric
DRIVE: Operating mode	Write Once	Write Once	Write Once	Write Once	Erasable
Interface	SCSI	SCSI	GPIB, SCSI	SCSI	SCSI
Speed control	CAV, CLV	MCAV, CAV	CLV	MCAV	CAV
CAPACITY/RECORDING DENSITY					
Total capacity (Mbytes)	F: 250/400	F: 450/300	F: 1,800	F: 2,500	F: 50
Capacity per track (Bytes)	F: 14,336*	F: 17,000 CAV	F: N/A	F: 53,000 avg.	F: 10,000
Data surfaces per spindle	1	1	1	1	1
Tracks per surface	20000	18750	45000	45000	4000
Track density (TPI)	15875	15875	15875	15875	6350
Maximum linear density (BPI)	21900	24900	19450	22400*	15825
Rotational speed (RPM)	925	900-1800	427-215	617	600
PERFORMANCE	Crs: Linear,	Crs: Linear,	Crs: Linear,	Crs: Linear,	Linear
Positioner type	Voice Coil Fine: Lens Actuator	Voice Coil Fine: Lens Actuator	Voice Coil Fine: Lens Actuator	Voice Coil Fine: Lens Actuator	Lilleat
Average positioning time (msec)	180	90	900	160	20
Within fine band (msec)	NA	.5	NA	2	NA
Fine band capacity (Mbytes)	NA	50 (tracks)	NA	60 (tracks)	NA
Average rotational delay (msec)	32	16.7 (CAV)	105	48.8	50.5
Average access time (msec)	212	106.7 (CAV)	1000	209	70
Data transfer rate (KBytes/sec)	120	528 (CAV)	313	500-1000	125
FIRST CUSTOMER SHIPMENT	4086	3088	4084	4/88	1988
U.S. OEM PRICE FOR 100 UNITS	\$4500	\$2,789	\$11,000/12,000	\$10,500	
COMMENTS	*Not applicable for CLV mode	Embedded SCSI	DF-0460 has SCSI interface	*2,7 RLL Code Embedded SCSI	
					Preliminary specification

MANUFACTURER PROFILES

All manufacturers now producing optical disk drives, or those which are expected to later enter the market, are listed in this section.

DISK/TREND normally estimates the annual volume of disk drive sales by manufacturers. Because no company had a high level of optical disk drive sales in 1987, this figure is not reported explicitly in this year's report. "1987 total net sales" covers the fiscal year ending in 1987 for each firm unless noted otherwise, or for the parent company if the disk drive manufacturer is a subsidiary. The fiscal year of listed firms ends on December 31, 1987, unless otherwise noted.

Manufacturers located in the United States that have majority owners headquartered in another country are grouped in the geographical area covering the owner's home office.

Exchange rates

The exchange rates used in converting the financial data of non-U.S. manufacturers to dollars are given below. The average exchange rate for 1987 is used, as cited by the Federal Reserve Bulletin and rounded to 3 significant figures.

Country	Currency	Currency units/U.S. dollar
France	Franc	6.01
Japan	Yen	145.0
Italy	Lira	1297.0
South Korea	Won	826.0
Netherlands	Guilder	2.45

U.S. Manufacturers

CHEROKEE DATA SYSTEMS 1880 S. Flatiron Court Boulder, CO 80301

Cherokee was founded in March, 1984. Key founders include managers previously with Storage Technology Corporation and Sperry Corporation. The firm has designed a 300 megabyte ruggedized 5.25" write-once drive that it expects to supply to customers in the defense and mineral resources industries. Volume shipments are expected to begin in the third quarter of 1987. The first major customer for the Cherokee product appears to be Lockheed Corporation, which announced in April of 1986 that it had invested \$2,000,000 in Cherokee and intended to modify the product for potential use in airborne electronic navigation systems for fighter aircraft. Cherokee began to ship small amounts of product in the first half of 1988. Plasmon Data Systems and Daicel are among the known suppliers of media for the Cherokee product.

DIGITAL EQUIPMENT CORPORATION 146 Main Street Maynard, MA 01754

1987 total net sales: \$9,389,400,000 Net income: \$1,137,400,000

(FY ending 6/30/86)

DEC is not actively producing an optical drive, but has erasable drives under development at its Shrewsbury facility. The firm was the first major system supplier to offer the CD-ROM as a system peripheral. The CD-ROM product is based upon a drive supplied by Philips, and is interfaced and supported on the highly successful Micro-VAX product line. DEC is also active in groups concerned with setting standards for CD-ROM. A long-time manufacturer of both rigid and floppy magnetic disk drives, DEC is a logical candidate for internal production of its own optical drives at some future time. In 1988, DEC announced the RV2O, which incorporates a 12", 1 gigabyte per side write-once drive supplied by Laser Magnetic Storage. DEC has also announced software capable of operating the drive in conjunction with a jukebox, but had not announced a jukebox as of mid-1988.

EASTMAN KODAK COMPANY 343 State Street Rochester, NY 14650

1987 total net sales: \$13,305,000,000 Net income: \$1,178,000,000

Eastman Kodak has at least two optical disk drives, one a very high capacity 14" write-once optical disk drive and the other a low-end magneto-

optical drive. The latter product originated at Verbatim Corporation, acquired by Eastman Kodak in 1985, and is not yet in production. The 14" drive began its production run in 1987, but relatively few have been shipped to date. It uses a 14" diameter format and employs proprietary dye/polymer media. The drive is used in Eastman Kodak's KIMS series image storage product lines and is also offered on an OEM basis as a computer peripheral. Media will be made by Verbatim at its North Carolina facility. The company also purchases 12" optical drives from Hitachi and 5.25" optical drives from ISI for use in the KIMS product line. Eastman Kodak produces an automated library unit for use with its own drive and purchases library units for systems using drives from other manufacturers.

HEWLETT-PACKARD COMPANY 3000 Hanover Street Palo Alto, CA 94303

1987 total net sales: \$8,090,000,000 Net income: \$644,000,000 (FY ending 10/31/86)

Hewlett-Packard does not currently produce optical disk drives, but has an active technology evaluation program at its Boise, Idaho facilities. Boise is also the firm's development facility for its advanced head and disk technology. Some related work on optical drive technology is being done at HP Laboratories. In September, 1987, The firm announced it would distribute technical documentation for its computer systems on CD-ROM, and followed that up in June of 1988 by commencing distribution of UNIX support information on CD-ROM. The general availability of CD-ROM as a peripheral product on small HP systems is planned for the last half of 1988.

HONEYWELL, INC. Sperry Space Systems Division 19019 North 59th Avenue Glendale, AZ 85308

Honeywell purchased Sperry's Optical Products Group and Aerospace Group at the time that Sperry and Burroughs merged to form Unisys, and combined them to form the Sperry Space Division. At the same time, Honeywell obtained Sperry's 9% share of ownership in ISI. The Sperry group is continuing development of a militarized drive based on ISI technology and is working jointly with ISI on the project. A 300 megabyte 5.25" write-once drive may begin shipping in 1988.

INFORMATION STORAGE, INC. 2768 Janitell Road Colorado Springs, CO 80906

ISI was started in 1983 by executives from Optical Peripherals Laboratory, the Philips and Control Data joint venture for optical drive development which later became part of Optical Storage International. Among the early investors in ISI were CPT (20%) and Tallgrass (20%). Sperry, now incorporated into Unisys, also became a significant investor, and acquired rights to ISI technology for use in military systems. This product area, along with Sperry's investment, was subsequently sold to Honeywell. ISI is supplying drives to Honeywell, but Honeywell will eventually make its own drives for military applications. The initial ISI product was a 5.25" write-once drive of 122 megabyte capacity, aimed at the personal computer and small system peripherals market. Limited production began in the fourth quarter of 1985. A funds shortage in early 1986 required scaling back the size of the company, but ISI was successful in attracting additional investment from local and foreign sources, in some cases by licensing its design. Single sided media for the ISI drive is being supplied by Sumitomo Chemical. Daicel will supply double sided media. In February, 1988 ISI announced a 600 megabyte per side, 5.25" write-once drive for volume delivery in late 1988. The drive uses track compression techniques to achieve the higher capacity. In 1986, ISI licensed two other firms, Maximum Storage Inc. and Kawatetsu Instruments, to use ISI technology and designs. Both firms are currently in low volume production.

INTERNATIONAL BUSINESS MACHINES CORPORATION Route 22 Armonk, NY 10504

1987 total net sales: \$54,217,000,000 Net income: \$5,258,000,000

Since May, 1986, IBM has demonstrated CD-ROM subsystems with various personal computers. A CD-ROM subsystem for use with IBM's PS/2 personal computer family may appear in the future, but it is expected that these requirements will be filled with outside purchases of OEM CD-ROM drives. In April, 1987, IBM announced the model 3363 write-once drive for use with its personal computers. The mechanism for this drive is obtained from Matsushita Electric; IBM supplies the electronics, software, and final assembly at its Tucson facility. The product has been unsuccessful, with fewer than 2,000 drives shipped to date. While IBM has not revealed its future product plans, it is widely believed in the industry that IBM is working on 5.25" erasable optical technology for use with workstations, desktop computers, and mass storage subsystems. As a result of a mid-1988 reorganization, IBM's future optical products will be made in a location other than Tucson, but the development staff and laboratories will remain in Tucson.

IOMEGA CORPORATION 1821 West 4000 South Roy, UT 84067

1987 total net sales: \$89,417,000 Net income: (\$36,688,000)

Iomega is best known for its successful line of Bernoulli Box flexible disk drives. As part of its development efforts for future products, the firm has established a subsidiary, Bernoulli Optical Systems Company (BOSCO), in Boulder, Colorado, to develop a Bernoulli principle drive using optical rather than magnetic recording. The drive has a 5.25" form factor and a target design capacity of one gigabyte. Media is being supplied by ICI Electronics, which also has an investment position in BOSCO. Iomega has also been marketing subsystems incorporating CD-ROM and Bernoulli box drives since early 1987.

MAXIMUM STORAGE, INC. 5025 Centennial Boulevard Colorado Springs, CO 80919

Privately held, MSI was founded in September, 1986, by Paul Schroeder, one of the founders of INMOS. Startup has been rapid, as MSI licensed technology from ISI and began producing a 5.25" write-once drive having specifications similar to the ISI drive in early 1987. The firm is also working on a higher capacity write-once drive of its own design for future release. MSI has designed its drives for use with IBM PC and PC-compatible computers, and has developed its own software to optimize data throughput in write-once drives.

MAXTOR CORPORATION 150 River Oaks Parkway San Jose, CA 95134

1987 total net sales: \$271,200,000 Net income: \$14,100,000

(FY ending 3/29/88)

Maxtor, with manufacturing facilities in California and Singapore, is a supplier of high performance, high capacity 5.25" rigid disk drives. In 1986, Maxtor entered into an agreement with Ricoh in which Maxtor acquired exclusive U.S. marketing rights for the Ricoh 5.25" write-once optical disk drive. Because of Maxtor's strong market penetration in the OEM community, this has been a successful effort for both parties. Maxtor is making a long term commitment to the optical disk drive industry, and has developed a 5.25" magneto-optic erasable disk offering 30 millisecond average seek time, the industry's fastest. Maxtor has also announced a 3.5" erasable drive, which will be supplied by Seiko Epson. Maxtor leverages its optical program through its sub-system subsidiaries; U.S. Design, a subsystem integrator that serves the DEC market, and Storage Dimensions, which serves the personal computer market. U.S. Design offers

optical disk drive subsystems with DEC interfaces, in addition to other storage subsystems using magnetic disk drives. Storage Dimensions accounts for a substantial fraction of Maxtor's sales of optical disk drives.

OPTIMEM Subsidiary of Cipher Data Products, Inc. 435 Oakmead Parkway Sunnyvale, CA 94086

1987 total net sales: \$178,192,000 Net income: \$4,331,000

Optimem began in 1980 as a development program managed by Shugart Associates, at that time the leading manufacturer of small disk drives. Optimem is one of the few U.S. based firms that is shipping a production version of an optical disk drive. 3M and Art Tech Gigadisc are sources for media. The Optimem products are 12", 1 and 1.2 gigabyte drives. Work on a 5.25" drive capable of using read-only, write-once or magneto-optical erasable media was discontinued in 1987. The 12" Optimem drive has found applications in image processing and in document storage and retrieval systems. In mid-1986, control of Optimem was acquired from Xerox by Cipher Data Products. Xerox retains a 10% minority ownership position. 3M Company subsequently acquired a small ownership position. Optimem was hurt in 1987 by the departure of most of its senior management, but the firm seems to have recovered from the disruption.

OPTOTECH, INC. 770 Wooten Road Colorado Springs, CO 80915

Founded in 1984, Optotech is one of the early suppliers of 5.25", 400 megabyte write-once drives. Initial production began in mid-1986 in Colorado, but Optotech, expecting a rapid ramp up, stated that its eventual plan was to manufacture offshore in Taiwan. Slow market growth and product problems limited production, however, and after a period of management instability, in mid-1988 Optotech announced that it would sell its write-once drive product line to Shugart Corporation. While no new product announcements have been made, Optotech is concentrating upon a line of erasable drives that may be announced in late 1988.

REFERENCE TECHNOLOGY, INC 1832 North 55th Street Boulder, CO 80301

Reference Technology's products include a 12" read-only unit, but the firm has also begun to remarket the Hitachi CD-ROM. Replication services for media are available through 3M. Reference Technology has entered into

marketing agreements with database publishers aimed at providing complete subsystem packages to the ultimate end users. The 12" media used is a video laserdisk which can be used for either data or images. Reference Technology has shifted its emphasis to the system integration; its product line now includes hardware and software to interface optical disk drives to small systems. Only a few drives were made by the firm in 1987 and 1988, mostly to service existing customer accounts.

SEAGATE TECHNOLOGY 920 Disc Drive Scotts Valley, CA 95066

1987 total net sales: \$958,065,000

Net income: \$139,741,000

(FY ending 6/30/87)

Seagate is one of the world's largest suppliers of small rigid disk drives and is highly vertically integrated. The company has begun development of optical drives including a high performance CD-ROM and a CD format read/write drive. The project remains in an experimental stage; products will not be available for some time.

SHUGART CORPORATION 9292 Jeronimo Irvine, CA 92718

Shugart Corporation, formerly the Narlinger Group, acquired the rights to the Shugart name in 1986 from Xerox Corporation, along with manufacturing rights to the 8" floppy drive product line. The firm has since acquired manufacturing rights and certain assets of other storage products companies including Tandon, Control Data, Kennedy and Optotech. In general, these have been obsolescent products that the firm continues to make (in small numbers) and service for existing customers. In 1988, Optotech sold its write-once optical drive product line to Shugart, which will supply products and maintenance services to Optotech's former customers.

STORAGE TECHNOLOGY CORPORATION 2270 South 88th Street Louisville, CO 80028

1987 total net sales: \$750,028,000 Net income: \$26,008,000

Storage Technology is best known as a producer of plug compatible tape and disk drives, but also invested over \$100 million in the development of a 4 gigabyte high performance optical drive and media, including \$40 million in a limited R&D partnership (STPII). The STC development program began in 1981 when STC purchased the Exxon Corporation's Star Sys-

tems Division optical disk drive development program. At its height, the optical program employed a staff of over 450 people and occupied a building with 500,000 square feet of space. Losses caused by overexpansion caused the firm to file for Chapter 11 in late 1984. At that time, STC transferred its media technology to DuPont and negotiated an agreement for DuPont to manufacture media for the STC drive. While the optical program was continued at a reduced scale for another year, continuing financial pressures resulted in termination of the program in late 1985. In July, 1987, STC emerged from Chapter 11 status and has been profitable since. The company is currently searching for a purchaser for its development work to date and related equipment, but its prospects for this are muddied by an investor lawsuit filed by participants in STPII.

VERBATIM CORPORATION Subsidiary of Eastman Kodak 1200 W. T. Harris Boulevard Charlotte, NC 28213

Verbatim, known primarily as a maker of floppy disk media, began developing an erasable optical disk drive in early 1983. Based upon technology developed at Philips, the Verbatim design, a 3.5" magnetooptical erasable drive, was announced in preliminary form at the NCC in 1985. In its final form, the drive is expected to be a low cost, moderately fast drive that will use Kerr effect technology and offer at least 50 megabytes of capacity. Eastman Kodak, which acquired Verbatim in 1985, has continued to support the development of the product at a high level, and has brought in several key employees from its operations in Rochester, New York, to strengthen the program. A non-operating prototype was demonstrated at the 1986 NCC and several later shows. drive will be produced by Eastman Kodak; media for the drive will be produced by Verbatim at its Charlotte facilities. Kasei Verbatim, a Japanese joint venture between Verbatim and Mitsubishi Chemical, announced in 1987 that it would also make 3.5" magneto-optical media. The development program has slipped several times, and production shipments before the spring of 1989 seem unlikely.

Japanese Manufacturers

(All fiscal years end in March, 1987, unless otherwise noted. All firms are in Japan unless otherwise noted.)

ALPS ELECTRIC CO., LTD 1-7, Yukigaya Otsuka-cho Ohta-ku, Tokyo 145

1987 total net sales: \$2,549,283,000 Net income: \$29,110,000

Alps Electric is a high growth manufacturer of electronic components and sub-assemblies for audio, television, instrument and computer applications. The firm's product line includes floppy and rigid disk drives. Alps has been working with other companies wishing to supply CD-ROMs and is able to supply design assistance, components, and to manufacture them on a contract basis.

CHINON INDUSTRIES INC. 21-17 1 Chome, Takashima Suwa City, Nagano 392

1987 total net sales: \$333,437,000 Net income \$8,006,000

Chinon is best known for its cameras and audio equipment, but 22% of its sales come from floppy disk drives. Eastman Kodak holds approximately 9.4% ownership. Chinon has been producing head assemblies for CD equipment and in 1988 began supplying CD-ROM drives to Atari as a custom product.

FUJITSU, LTD. 1-6-1, Marunouchi Chiyoda-ku, Tokyo 100

1987 total net sales: \$12,340,807,000 Net income: \$149,028,000

Fujitsu is Japan's largest producer of computer systems and also manufactures a wide variety of other electronic equipment. Computer products represent about 70% of Fujitsu's sales. The firm announced a write-once drive for use in document storage systems in 1984. The product is currently marketed only in Japan. In 1986, the company added a similar product for sale in Japan on an OEM basis. The head for the drive was developed in a joint effort with Olympus Optical Company, the industry's leading supplier of optical read/write heads. Media was developed in a joint program with Asahi Chemical. In October, 1986, Fujitsu announced a 5.25" write-once drive with 300 megabyte capacity for delivery in mid-1987. Fujitsu has a very active development program for erasable optical disk drives and media, and has made a technology announcement of erasable media using phase change techniques.

HITACHI, LTD. 6-2, Otemachi 2-chome Chiyoda-ku, Tokyo 100

1987 total net sales: \$33,439,007,000 Net income: \$680,524,000

Hitachi is Japan's largest manufacturer of electrical and electronic equipment and the third largest Japanese producer of computer systems, which account for about 10% of sales. It manufactures rigid disk drives and other peripherals as well as processors. Hitachi is one of the earlier entrants in the optical disk drive market. CD-ROM and writeonce products are available in the U.S. as well as in Japan. Hitachi's write-once 12" optical disk drive has a capacity of 1.3 gigabyte, and began shipping in 1984. The CD-ROM products began shipping in 1985, and in 1987, Hitachi was the leading CD-ROM drive producer. In early 1986, Sperry announced that the Hitachi 12" write-once optical drive was available as a peripheral device on its mainframes--the first optical drive offered by a mainframe vendor. A 5.25" continuous servo writeonce drive with a capacity of 300 megabytes was announced at COMDEX in 1986. A sampled servo version offering 320 megabytes per side was introduced in late 1987. The CD-ROM product line was expanded in 1986 and 1987 to include 5.25" form factor drive packaging and some new features. In early 1988, Hitachi made a technology announcement of a 3.5" erasable drive under development in its Central Research Laboratory. Hitachi offers an automated library storage unit based upon its 12" write-once drive. Media for the Hitachi drives is made by Hitachi Maxell. Hitachi also has an active program to develop erasable media.

JVC (VICTOR COMPANY OF JAPAN, LTD.) 1-4 Nihonbashi-Honcho Chuo-ku, 103 Tokyo

1987 total net sales: \$4,872,869,000 Net profit: \$45,083,000

JVC, as it is commonly known, is a major producer of consumer audio equipment, including CD players. Video tape recorders accounted for 65% of JVC sales in 1986, but JVC has been expanding into computer peripherals and has been shipping floppy and rigid disk drives since 1984 and 1985, respectively. The firm has introduced CD-ROM drives and went into low volume production in the last half of 1987.

KAWATETSU ADVANTECH CO. LTD. Subsidiary of Kawasaki Steel Corporation 14-4 Nihonbashi Kodemma-cho Chuo-ku, Tokyo 103

1987 total net sales: \$6,892,338,000 Net income: (\$46,276,000)

Kawatetsu Instrument is a smaller company specializing in electronic instrumentation. The firm began producing 5.25" write-once optical disk drives at its Nishinomiya plant in December of 1986 under license from I.S.I. Kawatetsu Instrument will market the drives to OEM customers in Asian markets through Kanto Denshi, a trading company, and may act as a second source of supply to I.S.I. if demand warrants. As of mid-1988, sales were entirely in Japan, mostly through distributors. In 1988, Kawatetsu Advantech, Kawasaki Steel and four private investors established Advansys Corporation, which is chartered to develop components for optical disk drives. Advantech holds 50% ownership and Kawasaki Steel an additional 25%.

MATSUSHITA COMMUNICATION INDUSTRIAL CO., LTD. 4-3-1, Tsunashima-Higashi Kohoku-ku, Yokohama 223

1985 total net sales: \$2,187,724,000 Net income: \$55,724,000 (FY ending 11/30/86)

The primary products of MCI include key telephones, car audio equipment and floppy disk drives. Disk drives are made at a highly automated plant in Hanamaki. In 1987, MCI announced a 5.25" 300 megabyte write-once optical disk drive offering 75 millisecond average access time and 925 kilobyte per second data transfer rate. An erasable drive having similar specifications has been announced for mid-1988 delivery.

MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. 1006, Kadoma City Osaka, 571

1985 total net sales: \$20,339,382,000 Net income: \$666,433,000 (FY ending 11/30/86)

MEI's Panasonic, National, Technics, and Quasar brands are among the most widely known in the world for appliances, consumer electronics, and communications equipment. The MEI High Fidelity/Audio division is offering CD-ROM products, including half-high models that became available in late 1987. The parent firm has also developed an 8" write-once drive that is now manufactured by Matsushita Graphics Communication Systems and used in captive document storage systems. In April, 1987, IBM announced a 200 megabyte write-once disk drive whose mechanism is made for IBM by Matsushita Electric's Disk Division. The product has

not been a commercial success, although MEI is offering a similar product under its own brand. The company also has an active program in erasable optical drives and media, and is noted for its advanced work in erasable phase change media.

MATSUSHITA GRAPHIC COMMUNICATION SYSTEMS 3-8 Shimomeguro 2-chome Meguro-ku, Tokyo 104

MGCS is best known for facsimile systems, but has, for the past two years, marketed a line of office automation equipment. These include document storage systems using an 8" write-once optical drive developed by MGCS' parent, Matsushita Electric Industrial Company. MGCS now manufactures the drive itself for use in the Panafile series of document storage systems. As of mid-1988, these systems were marketed only in Japan, but MGCS is considering marketing them in the U.S.

MITSUBISHI ELECTRIC CORP. 2-2-3, Marunouchi Chiyoda-ku, Tokyo 100

1987 total net sales: \$14,534,517,000 Net income: \$73,090,000

This company is most noted for heavy machinery production, but is also quite active in defense electronics and consumer electronics. Data and communication systems represent 28% of sales. In 1987, Mitsubishi introduced a 5.25" 300 megabyte write-once optical drive with 80 millisecond average access time. The drive will be sold as part of an optical storage library system that can contain as many as two drives and 152 disks.

NAKAMICHI CORPORATION 1-153, Suzuki-cho Kodaira City, Tokyo 187

1987 total net sales: \$79,338,000 Net income: \$1,607,000

Best known for its top of the line audio equipment, Nakamichi has had an optical disk drive development program for several years, and is currently selling laboratory equipment for optical disk drive development. About 16% of sales are computer related items. Sales of an erasable drive may begin late in 1988. In order to avoid brand name confusion, Nakamichi has elected to sell its equipment in the U.S. through California Peripherals Corporation, known more familiarly as Caliper.

NEC CORPORATION 5-33-1, Shiba Minato-ku, Tokyo 108

1987 total net sales: \$16,894,724,000 Net income: \$103,683,000

NEC has defined its product area as communications and computers, with computer products accounting for about 30% of annual revenues. The firm has the largest share of the Japanese personal computer market. NEC makes a variety of disk products, including floppy, rigid and optical disk drives. The firm's first optical drive, introduced in 1983, was a 1 gigabyte, 12" unit used primarily for NEC captive document storage systems but also sold on an OEM basis. 3M supplies the media for the NEC drive. A fingerprint tracking system using optical storage is sold by NEC and has achieved some success in the U.S. The largest such system installed has 28 NEC optical drives and may be further expanded. NEC Home Electronics is producing CD-ROM drives for both captive use and worldwide OEM sale.

NIKON CORPORATION 3-2-3, Marunouchi Chiyoda-ku, Tokyo 100

1987 total net sales: \$1,264,062,000 Net income: (\$11,848,000)

Nikon, a member of the Mitsubishi group, is best known for its popular line of cameras and other optical equipment. The firm is also a significant supplier of semiconductor production equipment, medical optical instruments, microscopes and telescopes, and other optical instruments. As a way of expanding its scope of business, Nikon is developing a 12" erasable optical drive. Limited quantities will be available in 1988, but the real opportunity for Nikon may lie in an innovative media design that solves the overwrite problem experienced by current magneto-optic media designs. However, it will take several years for Nikon to fully commercialize the technology.

NIPPON COLUMBIA CO, LTD. 4-14-14, Akasaka Minato-ku, Tokyo 107

1987 total net sales: \$629,379,000 Net income: \$11,552,000

Primarily known as a producer of phonograph records, consumer electronics and audio equipment, Nippon Columbia is leveraging its CD audio player experience to gain an entry in the CD-ROM market. The firm's product is unusual in that it can operate in a vertical or horizontal position, providing packaging flexibility to manufacturers of small systems. CD-ROM hardware production in limited quantities began in the fourth quarter of 1985. Half high models are now available. The company is also develop-

ing phase change technology write-once media, but has not yet committed to development of a write-once drive.

OLYMPUS OPTICAL CO., LTD. 22-2, Nishi-Shinjuku 1-chome Shinjuku-ku, Tokyo

1987 total net sales: \$1,138,986,000 Net income: \$35,855,000

Founded 1n 1919, Olympus Optical company is known primarily for its cameras and optical instruments. In recent years the company has broadened its activities to include electronics and some specialty products, including optical heads for disk drives. Development of optical disk drive technology began seven years ago when Olympus and Fujitsu began a joint project that resulted in one of the first commercial write-once optical disk drives. The firm's optical electronic products include optical heads, an optical card reader compatible with the Drexler Lasercard and a 5.25" erasable optical disk drive announced in November, 1987. The disk drive, which has a capacity of 326 megabytes per side, is being provided in sample quantities as of mid-1988, and Olympus has obtained a modest OEM contract for the drive in the United States.

PIONEER ELECTRONIC CORPORATION 4-1, Meguro 1-chome Meguro-ku, Tokyo 153

1987 total net sales: \$2,521,117,000 Net income: \$78,186,000 (FY ending 9/30/87)

Pioneer and Ricoh have had a joint development program on an 8" 750 megabyte optical write-once disk drive, with Ricoh being Pioneer's most significant customer for the product. First shipments began in late 1985, and Pioneer has established a separate division to make and sell the product. Pioneer has also developed a 5.25" write-once drive and displayed media for it at the Japan COMDEX show in early 1986. Drive shipments will commence in mid-1988. The media used in these drives is an cyanine dye based type that appears to offer superior resistance to corrosion. The active layer is placed on the PMMA substrate by spin coating, a relatively inexpensive production process. Pioneer's media is the first commercial version of dye based media to be brought to market.

RICOH CO., LTD. 15-1, Minami-Aoyama 1-chome Minato-ku, Tokyo 107

1987 total net sales: \$4,085,338,000 Net income: \$75,510,000

Copiers, photographic equipment, and sensitized papers provide most of Ricoh's revenues, but the firm also produces a growing line of data processing equipment. This product line, which was started in 1979, includes floppy disks and a cartridge-type rigid disk licensed from DMA Systems. Ricoh has been Pioneer's partner in the development of an 8" write-once optical drive which Ricoh uses in a document storage system, and the firm showed a prototype OEM 8" write-once drive at the 1986 NCC show. However, Ricoh has concentrated upon developing optical disk drives in the 5.25" form factor, rather than expending further effort on an 8" product. In early 1987, Ricoh and Maxtor entered an agreement whereby Maxtor will be the exclusive marketing agent for Ricoh OEM 5.25" writeonce optical disk drives in the United States. Ricoh is marketing subsystems containing optical drives in the U.S., an activity permitted under the terms of the Ricoh-Maxtor agreement. In 1987, Ricoh supplied more write-once drives than any other manufacturer, largely as a result of its collaboration with Maxtor. The firm has also announced a jukebox for 5.25" drives and, in 1988, a half high version of its original 5.25" optical disk drive design.

SANYO ELECTRIC CO., LTD. 2-18 Keihan-Hondori Moriguchi, Osaka 570

1987 total net sales: \$8,305,731,000 Net income: (\$120,869,000) (FY ending 11/30/87)

Sanyo is a major supplier of consumer electronics, appliances and components such as solar cells, and is one of Japan's more active offshore manufacturers. About 19% of sales are computing and business equipment. Sanyo is actively involved in CD equipment and media production and introduced a CD-ROM drive in 1987. Shipments will begin in 1988. The firm also makes 5.25" and 12" write-once optical drives for use in its own line of office equipment.

SEIKO EPSON CORPORATION 80 Hirooka Shiojiri-shi, Nagano 399-07

Epson is a member of the privately held Suwa Seikosha/Epson group owned by members of the Hattori family, which also control Japan's Seiko companies, known for watches and electronics. Epson is best known for its line of printers, but also manufactures a portable computer, displays, paper tape equipment, floppy and rigid disk drives. In 1988,

Epson agreed to supply Maxtor with a 160 megabyte 3.5" erasable optical disk drive and media then under development. These products will be marketed worldwide, except Japan, exclusively by Maxtor. Epson has Japanese marketing rights, but had not, as of mid-1988, made a product announcement.

SHARP CORPORATION 22-22 Nagaike-cho Abeno-ku, Osaka 545

1987 total net sales: \$7,921,938,000 Net income: \$143,276,000

Sharp is a supplier of electrical and electronic equipment. About 32% of sales are derived from computer or computer related products, including desktop and transportable personal computers. Appliances (22%), electronic parts (35%) and audio products (11%) comprise the remainder of corporate sales. Sharp has been actively developing magneto-optic disk drives and media for several years and has made several technology announcements. In mid-1987, the firm announced a 5.25" 190 megabyte erasable optical drive. The drive will be available in production quantities in 1989.

SONY CORPORATION 6-7-35, Kitashinagawa Shinagawa-ku, Tokyo 141

1987 total net sales: \$9,283,331,000 Net income: \$288,883,000 (FY ending 10/31/86)

Sony is well recognized as a leader in consumer electronics and has also earned a position as the major supplier of 3.5" floppy disk drives. Sony is fielding a product line of CD-ROM and write-once optical drives, and is actively involved in research on erasable media. The write-once products are available in 8" and 12" sizes. Sony is vertically integrated and supplies its own media. Because of its strong position in the audio CD player market, Sony is expected to be very competitive in the CD-ROM marketplace with products aimed at the personal computer and small systems market. Sony, together with Philips, has been a moving force in establishing standards for CD and CD-ROM devices. Sony's latest CD-ROM products have been modified to conform to the commonly used 5.25" form factor used by floppy and small rigid disk drives, thus making them physically compatible with personal computer packaging. To support its write-once drives, Sony offers an automated library unit, first shown at COMDEX in the fall of 1985. In 1987, Sony announced an erasable 5.25" optical drive using magneto-optical technology. Evaluation units were first shipped in late 1987, and additional improved evaluation units were shipped in mid-1988. Production units are scheduled to be shipped in late 1988.

TOSHIBA CORPORATION 1-1-1, Shibaura Minato-ku, Tokyo 105

1987 total net sales: \$22,810,986,000 Net income: \$235,710,000

Toshiba is a major factor in consumer electric and electronic products, and also has a leading position in the office computer market in Japan. Floppy, rigid, and optical drives are produced by Toshiba; the firm was one of the first to offer a commercial 12" write-once drive. Toshiba has also made product announcements of CD-ROM and 5.25" write-once optical disk drives, and began shipping samples of its 400 megabyte 5.25" write-once drive in 1986. CD-ROM shipments also began in 1986, with half high drives scheduled for the latter half of 1987. A 12" 2.5 gigabyte drive began shipments in 1988. The majority of Toshiba's write-once optical disk drives have been used in captive document storage systems, but they have also seen use in medical imaging systems. Toshiba is actively developing an erasable optical drive, but has not indicated availability yet.

European Manufacturers

ART TECH GIGADISC 1270 Avenue General Eisenhower 31047 Toulouse France

Beginning as the optical disk operation of Thomson-CSF, ATG was formed as a joint venture in 1984 when CIT-Alcatel, a maker of image processing systems, joined with Thomson-CSF, Rhone-Poulenc, Bull, and several other French companies to form Alcatel-Thomson-Gigadisc. major drive and media production facility in Toulouse was brought onstream in early 1986. ATG was one of the first firms to get into limited production of optical drives, but media shortages hampered its growth. A new facility alleviated this problem, but disappointing sales caused Alcatel to decide to withdraw from the venture, and for a short time ATG was dormant while new investors were found. Now officially Art Tech Gigadisc, the firm prefers to be known as ATG Gigadisc. Optimem and ATG share technology; the two firms' drives can use the same media. The current product line is based upon 12" write-once products using an unusual media developed by ATG. The drive will also operate with 3M or LMS media if properly adjusted. New product efforts include higher capacity write-once drives; a 5.25" drive is also under consideration. Most of the ATG drives have been used in image processing applications. ATG has also developed a library storage unit for 12" media, but it is not in production status at present.

LASERDRIVE LTD. 1101 Space Park Drive Santa Clara, CA 95054

Laserdrive was founded in 1984 with financial support from Acorn Computer and BSR International. Olivetti also acquired about 25% of ownership at that time. The firm's first product, a 5.25" write-once drive with 400 megabyte capacity, was formally introduced in 1987. Laserdrive has invested substantially in software that permits the optical drive to appear to the using system as a standard rigid drive and has developed special hardware for on-the-fly ECC. Production of the drive mechanism will be done in Japan by Sansui, but the electronics and final assembly will be done in the U.S., where the research and engineering functions are located. Media will be provided by Daicel Chemical Industries or Sumitomo Chemical. Laserdrive is receiving considerable financial and management support from Olivetti, which purchased 80% of Acorn Computer in mid-1985 and now, as a result, has a majority position in Laserdrive. In mid-1988, Laserdrive received a substantial order from Olivetti for its optical drive. The firm has developed interfaces for a variety of small systems, including the Apple MacIntosh, DEC Microvax, compatible PCs, and is aggressively pursuing new business.

LASER MAGNETIC STORAGE INTERNATIONAL Joint venture of N. V. Philips and Control Data 4425 ArrowsWest Drive Colorado Springs, CO 80907

LMS was formed in 1986 through the combination of Optical Storage International, Computer Peripherals International, and Philips' CD-ROM operations. Philips owns 51% of the company. CPI was a CDC and NCR joint venture that produced tape drives. OSI, formed in 1984, was a joint venture of Philips and Control Data. While Philips now holds the majority interest, the organization originally was managed by Control Data. OSI combined two earlier joint ventures, Optical Peripherals Laboratory in Colorado and Optical Media Laboratory in the Netherlands. The entire U.S. operation, at one time split between California and Colorado, was consolidated at the Colorado facility in early 1986. In the spring of 1986, Philips assumed management responsibility for LMS. LMS products currently include a 12" write once drive. A 5.25" writeonce drive using sampled servo tracking will begin to ship in quantity in late 1988. Also in the product line are CD-ROM drives, including a half high unit. LMS continues to produce tape drives, which are the firm's most profitable products. Image processing has been the most significant application to date for the company's write-once products. Media is obtained from an LMS manufacturing operation sharing Philips media manufacturing facilities at Blackburn in the UK.

ING. C. OLIVETTI & C., S.P.A. Via G. Jervis 77 10015 Ivrea Italy

1987 total net sales: \$5,705,474,000 Net income: \$309,946,000

Under Olivetti's current management, the firm has undertaken numerous changes to modernize the company's product lines and drop out of older lines. The biggest impact on Olivetti's lifestyle during the past few years was the purchase of a 25% share in the company by American Telephone and Telegraph, and adoption of an Olivetti-designed personal computer for distribution by AT&T. Production of small disk drives for this program has been underway at Ivrea, resulting in rapid growth in rigid disk drive production. Olivetti has a major investment in Laserdrive, Ltd., a producer of 5.25" write once drives. The company bought 80% of Because Acorn also had a major ownership Acorn Computer in 1985. position in Laserdrive, Ltd., Olivetti now owns about 65% of Laserdrive. Olivetti has announced PC systems with the Laserdrive product as well as with CD-ROMs provided by Hitachi. Olivetti has proceeded only to the research stage in terms of its own internal optical drive development, but technology assistance agreements recently concluded with Toshiba may increase the pace of Olivetti activity in the optical drive field.

N. V. PHILIPS 5600 MD Eindhoven The Netherlands

1987 total net sales: \$25,967,980,000 Net income: \$402,956,000

The Philips organization, established in 1891 as a manufacturer of electrical equipment, has been active for many years in the development of optically based information systems. Initial development work was spun off to joint ventures with Control Data. Philips' initial digital optical developments were a 12" write-once drive and the CD-ROM. Philips, together with Sony, has been instrumental in establishing standards for CD and CD-ROM drives. The Philips CD-ROM has the distinction of being the first CD-ROM to be accepted by a major system OEM: Digital Equipment Corporation offered it as a peripheral on its Micro-Vax line. In 1985, Philips also entered into a joint venture with DuPont to produce optical media of various types in large quantities. In 1986, OSI, a joint venture between Philips and Control Data, was reorganized as Laser Magnetic Storage and charged with the responsibility of manufacturing and marketing the Philips CD-ROM, write once products designed by OSI using Philips-developed technology, and magnetic tape drives previously produced by another CDC joint venture. Philips owns 51% of LMS; Control Data has the other 49%. Philips is also involved in a joint venture with Sun Microsystems to develop CD-ROM and CD-I authoring systems using Sun workstations. Philips is also a producer of CD media through its Polygram operation and several joint ventures with Japanese companies. Philips R&D activity includes development of 4.72" format write-once and erasable drives and media in conjunction with Laser Magnetic Storage.

DISK/TREND ON DISK

Introduction

DISK/TREND ON DISK is a set of floppy disks containing the statistical tables and specification tables from the annual DISK/TREND reports. The disk files have been prepared in a format usable by Lotus 1-2-3 on IBM or IBM-compatible computers running under the MS-DOS or PC-DOS operating system. All files contain data only: Manipulation of the data is the user's responsibility. Because some of the files can be very large, system memory of 640K or more is recommended. While the files supplied can be used with Lotus 1-2-3 versions 1A and up, we recommend the use of versions 2.0 and up in order to be able to take advantage of Lotus advanced features to manipulate data.

Two disks are available for each DISK/TREND disk drive report. The first disk contains the statistical tables. File names are keyed to the table numbers in the report for easy identification. The second disk contains the specification table in a data base format. Both types of data are directly loadable by Lotus 1-2-3. The color used on the label of each floppy disk is similar to the color used on the cover of the corresponding report for ease in identification.

Because the statistical tables are provided in ASCII form, they can be used with any spread sheet program that can import ASCII text files. However, the specification tables have been prepared specifically in Lotus 1-2-3 format to allow them to be searchable using Lotus 1-2-3 database commands. If you are using a spreadsheet program other than Lotus 1-2-3 that can translate Lotus WK1 formatted files to its own format, it may be able to import the specification tables.

The authors of this manual assume that you are familiar with personal computers, Lotus 1-2-3, and MS-DOS, and do not cover their operation in this manual. This manual deals specifically with how to load and use the files supplied on the floppy disks.

Note: Please read the license information on the following page.

DISK/TREND on Disk Information License

DISK/TREND supplies diskettes containing selected information from the 1988 DISK/TREND Report as a <u>separately purchased option</u> to subscribers to the corresponding 1988 DISK/TREND Report volume.

YOU MAY:

- 1) Install and use the information on a single computer system, provided that you or the organization by which you are employed has purchased at least one copy of the DISK/TREND report volume associated with the information.
- 2) Make backup copies of the information for your own use. Such backup copies may be used only on the computer on which the information is installed. You must reproduce the copyright notice on any copies.
- 3) Reproduce the information, but not the associated programs or documentation, contained in the Product for use within internal documents distributed within the organization by which you are employed.

YOU MAY NOT:

- 1) Install, or allow the use of, the information on more than a single computer system.
- 2) Transfer the information through or within a computer network.
- 3) Distribute the information or any portion thereof in any form outside the organization by which you are employed or modify the information for purposes of distribution.
- 4) Transfer this license to another party.

Trademarks

IBM is a trademark of International Business Machines Corporation.

Lotus and Lotus 1-2-3 are trademarks of Lotus Development Corporation.

MS-DOS is a trademark of Microsoft Corporation.

Getting Started

The first thing you should do is to make working copies of the original DISK/TREND diskettes. Place the originals in a safe location and use only the working copies for day to day operations. This procedure will help to protect your data from inadvertent destruction or loss due to a malfunction of the computer or its operator. We also recommend that you place a write protect tab on the working copies (after you create them) for the same reason. Use the hard disk or another floppy disk copy for day to day manipulations of the files.

The statistical tables are provided in ASCII text format. This allows you to use any word processor to edit the file prior to importing it into Lotus 1-2-3. Appropriate editing removes any material you don't wish to work with and allows you to add figures or text to the data tables. You may also embed the data in internal documents or reports you are preparing for use within your company.

STATISTICAL TABLES

Loading

1. Place the floppy disk marked 'Tables' in a floppy disk drive able to read 5.25", 360 KB disks. This is usually drive A, but if you are using a dual floppy only system, use drive B and put the Lotus 1-2-3 system disk in drive A. Use the DOS 'DIR' command to examine the file directory on the 'Tables' disk. If there are any special instructions, they will be in a file named READ.ME. To see these instructions, at the DOS prompt type:

TYPE A:READ.ME (Use the appropriate drive letter if not A)

If you wish to print the instructions, turn on your printer and type:

TYPE A:READ.ME>PRN

2. Do this step if you have a hard disk. Log into the hard disk directory in which Lotus 1-2-3 normally stores worksheet files. Using the DOS 'COPY' command, copy all the statistical table files to the hard disk. This can be done in one step using the copy command as follows:

COPY A:?T*.*

Several utility files should also be copied. The command is:

COPY A:*.PRN

3. Now you are ready to start Lotus 1-2-3. If you are using a two floppy system, place the DISK/TREND disk in drive B and the Lotus 1-2-3 system disk in drive A. If you are using a rigid disk system, place the Lotus 1-2-3 system disk in floppy drive A. Now start Lotus 1-2-3 as usual. After obtaining the blank spreadsheet image on the screen, use the Lotus File Import Text command to select a file. The command is:

/FIT<filename>

The file names are in the format XTYY.ZZX, where:

X= type of data

F (Flexible disk drive data)

R (Rigid disk drive data)

O (Optical disk drive data)

YY= Table number, as shown in the appropriate report volume

ZZ= Report Year.

Examples:

File RT10.87R is 1987 Rigid Disk Drive Report Table 10 File FT2.87F is 1987 Flexible Disk Drive Report Table 2 File OT1.880 is 1988 Optical Disk Drive Report Table 1

The file selected will be loaded as a worksheet in text block format. You can use Lotus 1-2-3 commands to edit the worksheet and embed it in some other document or, using the Lotus 1-2-3 Data Parse commands, you can convert the numeric content to individual cells which can be manipulated or graphed using Lotus 1-2-3 commands. See the Lotus 1-2-3 reference manual for details on numerical manipulations and graphics.

Data Parsing made easy

Most Lotus 1-2-3 users are not familiar with the Data Parse commands. They allow the user to convert a table which has been imported in the form of a block of text to a form in which the individual numbers and labels can be manipulated as spreadsheet elements or used to prepare graphics.

Before proceeding, it would be useful to read the Lotus reference manual on this subject if you are not a regular user of the Data Parse commands.

The trickiest and most time consuming part of using the Data Parse commands is setting up the format line. Several utility files have been provided on the tables disk to make this process easier. These are used with various table formats encountered in the DISK/TREND Reports:

o FORMLINA.PRN Used with Table 1 and the Revenue and Unit

Shipment tables found in the product group

sections of the reports.

o FORMLINB.PRN Used with table 2.

o FORMLINC.PRN Used with tables 3 through 6.

o FORMLIND.PRN Used with Application tables.

There are no FORMLIN format files for disk diameter tables or market share tables (if any), as these are variable in format. You will have to construct the format line directly, but after you have seen how it is done in the other tables, this should not be too big a job.

A step by step process for parsing and an example are shown on the following pages.

The Parsing Process

The basic process of parsing the data table goes like this:

- 1. Enter Lotus 1-2-3 and obtain the blank spreadsheet screen.
- 2. Import the file to be parsed using the /FIT<filename>command.
- 3. Move the cursor in the A column to the blank row just above the first line of numbers.
- 4. Import the Formline file.

Example: /FIT FORMLINA.PRN

A sample format line will appear in the row. See the figure below.

Portion of sample file with sample format line imported

TABLE 1

CONSOLIDATED WORLDWIDE REVENUES

ALL EXISTING MOVING HEAD DISK DRIVE GROUPS

	REVENUE SUMMARY					
	1986 Revenues		1987		1988	
	U.S.	WW	U.S.	WW	U.S.	WW
U.S. Manufacturers		too and the and that had	and made have send send send		1040 Carl 1050 Carl 1050 Carl	ense bass salak tapa
L>>>>>>> IBM Captive		-	-	V>>>>>* 7,707.0	•	•
Other U.S. Captive	1.123.8	1.902.8	1.355.0	2.059.3	1.808.9	2.649.

TOTAL U.S. CAPTIVE 4,934.1 8,314.8 6,146.9 9,766.3 6,796.8 10,688.

- 5. Move the cursor down one row to the first row of numbers. In the example above, this will place it on the 'IBM Captive' label.
- 6. Use the Data Parse format command /DPFCFE. This creates the actual format line and puts it into EDIT mode. You will now see two format lines: the sample format line (above) and the actual format line (below).

1988 DISK/TREND REPORT

7. Now edit the <u>actual</u> format line until it is identical to the sample format line.

Optional: The <u>sample</u> format line can now be deleted if you wish. It is not needed for further operations. You will have to Quit the Data Parse mode, delete the line, and re-enter Data Parse mode.

8. Create the input range. Select the Input-Column command and then move the cursor to column 'A' of the format line. Anchor the cursor with a period and then set the range to include all columns from 'A' to the right side of the table and all rows from the format line to the bottom of the table by using the arrow keys.

Be careful not to include footnotes or other similar material in the input range, because the parsing process will cause unusual spacing to appear in text sentances or paragraphs.

- 9. Create the output range. This is where the parsed data will appear. It is convenient to locate it a few rows below the input range and directly in line with the input range. Select the Output-Range command and locate the cursor in the 'A' column a few rows below the input range, then hit 'Return'. Now expand the 'A' column to 27 spaces in width to accommodate the left margin labels. (You will have to leave the parse mode to do this)
- 10. Return to the parse mode. Select the GO command. The parsed data will appear in the output range. You will have to use the /RF (range format) command on the output data to obtain a consistent format because figures terminating in .0 will drop the decimal places unless the format is prescribed with a decimal place. You may also have to reformat some lines containing percentages in some tables.
- 11. You now have a table in which all of the elements may be manipulated, but there are no formulas. You must create your own formulas.

Optional: You can delete the input range now if you wish. This will bring the newly parsed date up to the headers at the top of the page for easier reading.

While the procedure described above seems complex, it is not difficult or time consuming in practice. After you have done it once or twice, it will take only two or three minutes per table to do data parsing.

SPECIFICATION TABLES

Loading

1. Place the floppy disk marked 'Specifications' in a floppy disk drive able to read 5.25", 360 KB disks. This is usually drive A, but if you are using a dual floppy only system, use drive B and put the Lotus 1-2-3 system disk in drive A. Use the DOS 'DIR' command to examine the file directory on the 'Tables' disk. If there are any special instructions, they will be in a file named READ.ME. To see these instructions, at the DOS prompt type:

TYPE A:READ.ME (Use the appropriate drive letter if not A)

If you wish to print the instructions, turn on your printer and type:

TYPE A:READ.ME>PRN

2. Do this step if you have a hard disk. Log into the hard disk directory in which Lotus 1-2-3 normally stores worksheet files. Using the DOS 'COPY' command, copy all the specification table files to the hard disk. This can be done in one step using the copy command as follows:

COPY A:?S*.*

3. Now you are ready to start Lotus 1-2-3. If you are using a two floppy system, place the DISK/TREND disk in drive B and the Lotus 1-2-3 system disk in drive A. If you are using a rigid disk system, place the Lotus 1-2-3 system disk in floppy drive A. Now start Lotus 1-2-3 as usual. After obtaining the blank spreadsheet image on the screen, use the Lotus File Retrieve command to select a file. The command is:

/FR<filename>

The file names are in the format XSYZZ.WK1 or XSYZZ.WKS, depending upon which version of Lotus 1-2-3 you are using. X,Y, and Z are:

Y= table number. Usually, there is only one table, but if the specification file is so large as to need multiple disks to hold it, there may be several.

ZZ= Year of report.

Note that the specification tables load directly as a database. You can use the database functions of Lotus 1-2-3 to sort, count or otherwise manipulate the data for purposes of special analysis.

Using the specification database

<u>Introduction</u>: If you have not used the Lotus 1-2-3 /DATA QUERY commands, it will be helpful for you to review the sections of the Lotus 1-2-3 reference manual that pertain to their use before proceeding further.

The specification database fits into a worksheet format of 25 to 30 columns, depending upon whether rigid, optical or floppy drives are involved, and a row count of up to 500 rows. Each row represents a specific record, and is equivalent to a column in the Specifications section of the DISK/TREND report. Each column represents a specific specification parameter, and is equivalent to one row of the DISK/TREND report.

The database has been set up for data extraction using Lotus 1-2-3 commands. The Input, Output and Criterion ranges have been predefined, but you, the user, will have to decide how you want the extracted data manipulated and place the appropriate Lotus functions, such as QCOUNT, in the appropriate cells. Some rows between the bottom of the input range and the top of the output range have been left empty so that you can do this easily. When the database is first loaded, you will see the top of the input range, showing the first column (manufacturer name) for the first several manufacturers. Use the arrow keys to find other manufacturers or specific product specs.

Operating tips

Expanding the input or output ranges: The predefined output range is of a nominal size, and a search with broad parameters may result in overflowing the output range. In such a case, merely extend the output range (add more rows) using the Lotus 1-2-3 /DQEO command. Similarly, it is possible to extend the input range to add more products, but be sure you move the output range so that there is no overlap.

Memory overflow: If you should receive a memory overflow message while manipulating the specification data, it is usually because:

- o There are other 'pop-up' programs resident in the memory of your computer. These should be removed.
- o You have selected too large an output range. Use a smaller output range or delete some of the columns that contain data not relevant to your analysis. If you delete data, be sure that if you save your spreadsheet you use a different file name, otherwise you will overwrite the original file with the modified spreadsheet.

Technical Support

Just about all of your questions regarding the use of DISK/TREND on Disk should be answered in this manual or in the Lotus 1-2-3 reference manual. However, if you need to contact us to resolve any points of confusion, report errors, or otherwise receive comfort:

Call us at: 415-961-6209

Ask for Technical Support

In order to make this process efficient, when you call--

- 1. Tell us what is on the diskette label.
- 2. Have your computer up and displaying the data or operation that is the subject of your call.
- 3. Have this manual and the Lotus 1-2-3 reference manual handy.